Первые представители этого ряда — этен (этилен) (Н2С=СН2) и этин (ацетилен) (НС=СН). Этен и этин являются важнейшими промежуточными продуктами в технологии органического синтеза. Оба эти газа в настоящее время производятся во всем мире в огромных количествах путем каталитической переработки углеводородов нефти. Кроме того, большое значение имеет способ получения этина из карбида кальция и воды.
Изучение свойств ненасыщенных углеводородов начнем с этена, который легко можно получить из спирта и серной кислоты.
Соберем простой прибор. Для этого понадобятся две пробирки. К одной из них подберем пробку с двумя отверстиями и вставим в нее изогнутую стеклянную трубку и термометр со шкалой до 250 °C. Все соединения должны быть достаточно плотными, чтобы образующийся газ мог выходить только через трубку.
В пробирку поместим 2 мл денатурированного спирта и осторожно, малыми порциями, добавим 5 мл концентрированной серной кислоты (только в защитных очках!). При этом смесь очень сильно разогреется, и мы сразу же почувствуем приятный запах — это выделяется этен, пока в малом количестве. Можно добавить в пробирку еще 1–2 г мелкого чистого песка, чтобы ускорить реакцию. Однако можно этого и не делать.
Во вторую пробирку нальем 5-10 мл 10 %-ного раствора соды (карбоната натрия) и добавим несколько капель раствора перманганата калия. Раствор должен получиться интенсивно фиолетовым, но не слишком темным. Он называется реактивом Байера (В советской химической литературе способ определения строения непредельных соединений путем их окисления разбавленным раствором перманганата калия получил название реакции Вагнера. Эта реакция была открыта Е.Е. Вагнером в 1887 году и описана в «Журнале Русского физико-химического общества» за 1888 г., т. 20, стр. 72 — Прим. перев.)
Теперь соберем прибор и будем нагревать первую пробирку горелкой Бунзена до тех пор, пока термометр, погруженный в смесь спирта с серной кислотой, не покажет 150–170 °C.
По стеклянной трубке отводится газообразный этен (теперь мы легко узнаем его по приятному запаху). Пропустим его через реактив Байера. Вскоре раствор обесцветится и одновременно выделятся коричневые хлопья оксида марганца (IV).
Если найдется немного бромной воды, можно разбавить ее водой в соотношении 1:1 и через полученную бурую жидкость пропустить этен. (Осторожно! Пары брома действуют на глаза и дыхательные пути). (Об опасности работы с бромом см. стр. 218. Места, обожженные бромом, следует тщательно протереть бензином до отсутствия запаха брома, а затем втереть в кожу глицерин. Немедленно после ожога бром можно смыть также бензолом или 10 %-ным раствором тиосульфата (гипосульфита) натрия. Последний продается в магазинах фототоваров. — Прим. перев.)
Окраска бромной воды исчезнет. После этого можно поджечь этен, все еще выделяющийся из изогнутой стеклянной трубки. Он горит светящемся, слегка коптящим пламенем.
Ненасыщенные углеводороды, в противоположность насыщенным, легко вступают в химические реакции. Так, в нашем опыте этен окислялся кислородом из перманганата калия, а перманганат калия при этом восстанавливался. Так же, как правило, ведут себя по отношению к реактиву Байера и другие ненасыщенные углеводороды. Реакционная способность этих веществ объясняется тем, что их двойные или тройные связи расщепляются с образованием простых связей. При этом за счет свободных валентностей присоединяются атомы или группы атомов, например кислород или бром.
Уравнения реакций:
СН2 = СН2 + 1/2 02 + Н2O — > НО-СН2-СН2-ОН
СН2 = СН2 + Br2 — > Вг-СН2-СН2-Вг
Применение этена и этина (ацетилена) в промышленности обусловлено тем, что, в отличие от алканов, они обладают высокой реакционной способностью. Именно благодаря ей на основе этена и этина можно построить множество различных органических соединений.
ОБНАРУЖЕНИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ
Большинство органических соединений состоит преимущественно из углерода и водорода. Уже знакомые нам углеводороды содержат только эти два элемента. В остальных же органических соединениях, со многими из которых мы познакомимся позже, содержатся еще один или несколько других элементов, чаще всего кислород, галогены (хлор, бром, йод), азот и сера.
Приведенные ниже простые опыты во многих случаях пригодны для качественного определения азота, галогенов и серы.
Обнаружение азота
Чтобы выяснить, есть ли в веществе азот, пробу греют в пробирке с избытком натронной извести. Если ее нет, можно заменить ее смесью гидроксида натрия (едкого натра) с избытком негашеной извести. Проследим только, чтобы в верхней части пробирки не осталось приставших частиц извести. Заткнем пробирку кусочком ваты, а на него положим увлажненную полоску красной лакмусовой бумаги. Пробирку нагреем на горелке Бунзена (маленьким пламенем) — сначала слабо, потом сильнее. Синее окрашивание индикаторной бумаги указывает на присутствие азота. Определение основано на том, что содержащийся в органических веществах связанный азот при нагревании с натронной известью (или еще по одному способу — с концентрированной серной кислотой) во многих случаях превращается в аммиак.
Обнаружение галогенов
Во многих случаях галогены в органических соединениях можно обнаружить с помощью пробы Бейльштейна. Возьмем не слишком тонкую медную проволоку без изоляции, зачистим ее и загнем один конец петелькой. В петле укрепим кусочек пористой керамики ("кипелку"). Прокалим этот конец проволоки в несветящейся зоне пламени горелки, пока не исчезнет зеленая окраска пламени. Затем погрузим петельку в исследуемую жидкость или поместим на нее пробу твердого вещества. Если теперь снова внести проволоку в несветящуюся зону пламени, то присутствие галогена обнаруживается по зеленому (иод) или голубовато-зеленому (хлор, бром) окрашиванию пламени. Правда, эта проба очень чувствительна. Поэтому часто галоген обнаруживается даже в том случае, когда исследуемое вещество загрязнено малым количество содержащей галоген примеси. Некоторые соединения (муравьиная и бензойная кислоты, различные неорганические вещества) мешают определению, так как они сами окрашивают пламя в зеленый цвет.
Обнаружение серы
Для обнаружения серы обычно прокаливают пробу с металлическим натрием. При этом сера переходит в сульфид, который обнаруживают с помощью нитропруссида натрия. Мы выберем другой способ, чтобы обойтись без труднодоступного и опасного натрия.
На кончике шпателя возьмем пробу исследуемого вещества и поместим ее в маленькую фарфоровую чашку. Добавим немного концентрированной или лучше дымящей азотной кислоты и сильно нагреем чашку. Делать это нужно в вытяжном шкафу или на открытом воздухе. При этом кислота улетучивается. К остатку еще раз добавим азотную кислоту и снова выпарим. Растворим остаток в воде и при необходимости отфильтруем раствор. Если в пробе исследуемого вещества содержалась сера, то при смешивании полученного раствора с раствором хлорида бария выпадет осадок нерастворимого сульфата бария.
С помощью этих реакций можно испытать на содержание азота, серы или хлора самые разнообразные органические вещества. Попробуйте исследовать, например, жидкость для выведения пятен, средства для борьбы с молью и другими вредителями, остатки лекарств в домашней аптечке, кусочек рыбы, образцы шерсти, различных пластмасс и т. д.
Кислород в органических соединениях, как правило, определяется косвенным методом. Для этого находят процентное содержание всех остальных элементов и вычитают его из 100 %. Основателем количественного анализа соединений углерода — элементного анализа — был Либих (1803–1873). С тех пор элементный анализ непрерывно совершенствовался и в наши дни достиг высокого уровня. Сейчас можно точно определить процентное содержание различных элементов при наличии лишь 1 мг вещества. Благодаря этому удалось выяснить состав очень редких природных веществ, например гормонов, стимуляторов роста и красителей, придающих окраску бабочкам.