Литмир - Электронная Библиотека

Если из нержавеющей проволоки сделать буквы, их плотно обмотать ниткой и поместить в раствор для выращивания кристаллов, то можно получить красивые буквы для оформления стендов. Их вынимают из раствора, сушат и покрывают бесцветным лаком или клеем для склеивания пластмасс.

3. Получение кристаллов малорастворимых или нерастворимых соединений в воде

Самый простой пример таких солей — это готовый иодид свинца, растворимость которого (ПР = 8,7∙10-9; s = 0,0013 г/мл) возрастает с нагреванием. Однако пытаться приготовить насыщенные растворы нерастворимых соединений для получения огромных кристаллов — бесполезно.

Но вы спросите: "Ну, как-то же они растут в природе, например, кальцит СаСО3, барит BaSO4". Вот именно, что "в природе", а там свои лабораторные условия, свои давление и температура. Попрошу вас приготовить раствор угольной кислоты, — удастся вам это сделать? А представьте себе, что происходит с СO2, СаСО3 на глубине 20–30 м, где они испытывают на себе давление тысяч тон породы, здесь речи и быть не может о каких-то творожистых осадках: кристаллы растут, как стекло, прозрачные. Правда, при смене давления (выход растворов в пещеры) идёт быстрая кристаллизация, так растут "пещерные сосульки". Попала угольная кислота в залежи известняка — вот вам и карстовые пещеры.

Вот мы и попробуем максимально приблизиться к природным условиям выращивания но при наших t°C и Р, атм. Но кристаллы, подобные медному купоросу, здесь никто не обещает.

Для опыта нам потребуется большой стеклянный стакан (около 1 литра) или аквариум (объём 3–5 л). Выберите одну из ниже перечисленных реакций и подготовьте исходные вещества (сухие вещества и концентрированные растворы):

РЬ(NO3)2 + 2KBr (KI, КСl) = РЬВr2 (РbI2, РЬСl2) + 2KNO3;

РЬ(NO3)2 + 2K2SO4 = PbSO4 + 2KNO3;

ВаСl2 + Na2S2O3 = BaS2O3 + 2NaCl;

СаСl2 + 2NaOH = Са(OН)2 + 2NaCl;

СаСl2 + Na2CO3 = СаСО3 + 2NaCl;

В большой стакан помещают стаканы малого объёма (удобны аптекарские пенициллиновые пузырьки), в которых находятся концентрированные растворы исходных солей с небольшим количеством соли (1/6 часть) на дне, на расстояние 5–6 см. Теперь в стакан наливают воду (аккуратно!) по палочке или через воронку с длинным отводом (это может быть надетый шланг). Жидкости будут отличаться по плотностям и перемешиваться сразу не будут. Слой воды над пузырьками должен составить 8-10 см. Сверху раствор заливают маслом или парафином и оставляют при комнатной температуре.

Уже спустя 2–3 дня вы заметите появление следов осадка возле одного из пузырьков (процесс диффузии), а спустя неделю, на отверстии пузырька появится что-то напоминающее кристалл. У хлорида свинца, карбоната кальция это будут длинные игольчатые кристаллы, у иодида свинца — стружки и плитки (рис. 6). По мере концентрированного раствора соли в пузырьке, будет расходоваться заранее положенный избыток. Чем дальше будут удалены пузырьки в сосуде, чем больше будет сосуд, тем больше вероятность создать условия для медленного роста большого кристалла.

Рис. 6. Сросшиеся кристаллы PbI2

Примечание: Нами создаются неидеальные природные условия, так как у природы в ещё фигурирует давление и время. Вы ни за что не получите таким образом малахитовые (СuОН)2СОЗ пласты с соответствующим узором, исландский шпат СаСО3, имеющий вид скошенного куба. Опыты следует проводить только с теми веществами, ПР (произведение растворимости) которых не меньше 10–10. А для получения искусственного малахита необходим гидротермальный синтез (от греч. "гидор" — вода и "термос" — горячий) Этот процесс моделирует образование минералов в земных недрах. Он основан на способности воды растворять при высоких температурах (до 500 °C) и очень высоком давлении (до 3000 атм) вещества, которые в обычных условиях практически не растворимы, например, основной карбонат меди (СuОН)2СО3.

4. Получение кристаллов простых веществ

Здесь не пойдёт речь о методах зонной плавки или йодного рафинирования, которые используются для получения сверхчистых монокристаллов простых веществ (германия Ge, кремния Si, циркония Zr, титана Ti и т. п.).

Выращивать кристаллы металлов мы будем из раствора. И, конечно же, это будут металлы неактивные, невзаимодействующие с водой (медь, сурьма, висмут, серебро, золото, свинец, олово и т. п.). Описание опыта будет сведено к выращиванию кристаллов меди.

Для эксперимента нам понадобится медный купорос (тв.), хлорид натрия (тв. и конц. р-р), дистиллированная вода, стакан (от 50 мл до 700 мл) или обычная пробирка, фильтровальная бумага, железные скрепки, кнопки и т. п.

Начинающему можно посоветовать для начала попробовать провести опыт в пробирке. Так он поймёт немного суть процесса и получит первый навык.

Если вы опустите железный гвоздь в стакан с медным купоросом, то он мгновенно покроется розовой плёнкой, состоящей из очень мелких кристалликов восстановленной меди. Такая плёнка легко стирается и особого интереса не представляет, а дальнейшее содержание железа в растворе даст губчатую медь, а не кристаллы. Для получения кристаллов нужно создать среду-ингибитор, такой средой в нашем случае будет хлорид натрия.

В чистый стакан (рис. 7) насыпают медный купорос очень тонким слоем, чтобы он покрыл дно, утрамбовывают.

Рис. 7. Выращивание кристаллов меди:

1 — фильтровальная бумага; 2 — водород; 3 — насыщенный раствор хлорида натрия (гипертонический раствор); 4 — слой из железных предметов; 5 — слой хлорида натрия NaCl; 6 — пузырьки воздуха, которые следует удалить; 7 — слой медного купороса CuSO4

Сверху насыпают хлорид натрия, он должен превышать количество медного купороса в 3–5 раз (чем больше, тем лучше). Слой также трамбуют. Поверх слоёв укладывают круг из фильтровальной бумаги так, чтобы он вплотную прикасался к стенкам стакана. На фильтр высыпают железные предметы. Теперь удерживая фильтр стеклянной палочкой, наливают медленно и тоненькой струйкой концентрированный раствор хлорида натрия. Раствор не должен перевернуть фильтр или перемешать слои! Чтобы все слои хорошо пропитались, и воздух вышел, аккуратно вдоль стенки опускают тонкую упругую проволоку, давая лишний канал раствору до дна. Стакан закрывают фильтровальной бумагой и оставляют стоять при комнатной температуре.

Спустя пару суток (а иногда это видно в первые минуты) слои солей окрасятся в зелёный цвет, это, очевидно, связано с образованием в слоях хлорида меди (II) СuСl2. После того, как "зелень" дойдёт до фильтра, начнут появляться в слое хлорида натрия розовые нити-дендриты (не сформировавшиеся кристаллы) меди, которые иногда приобретают удивительный вид папоротниковых и еловых веточек (рис. 8,б). Если дать им разрастись, то вскоре вы получите обещанные яркорозовые кристаллы меди (рис. 8,а), имеющие вид призм и октаэдров.

Из-за гидролиза соли — в растворе среда кислая и параллельно происходит растворение железа с выделением водорода. Атомарный водород успевает восстановить присутствующие в железе примеси, например углерод до углеводорода. При этом водород имеет мерзкий запах. Помните: такой водород вдыхать опасно!!! Если вы решили использовать вместо железа технический цинк, то реакция пойдёт хуже, но здесь опасность другая: в цинке может содержаться мышьяк, который восстановиться до сильнейшего яда — арсина AsH3.

156
{"b":"870520","o":1}