2. Основы капиллярного электрофореза (КЭ)
Развитие КЭ началось с пионерских работ Миккерса и Эвериртса (конец 70-х годов) и Йортенсона и Лукаса (начало 80-х годов). Быстрое развитие метода было обусловлено двумя решающими усовершенствованиями: во-первых, был существенно уменьшен внутренний диаметр разделительного капилляра; во-вторых, детектирование по электропроводности, пришедшее первоначально из изотахофореза, было заменено на прямое УФ-двтектирование в потоке жидкости. Предпосылкой для дальнейшего развития метода была возможность использования кварцевого капилляра с высокой прозрачностью в ближней УФ-области и с равномерным внутренним диаметром от 50 до 100 мкм. При этом улучшились как разделение, так и возможности детектирования.
С помощью кварцевого капилляра с внутренним диаметром 50-100 мкм удалось достигнуть высокоэффективного разделения белков и дансил-аминокислот, при котором из-за сравнительно большого отношения поверхности к объему было сильно уменьшено влияние мешающей разделению термически индуцированной конвекции. Применение кварцевого капилляра позволило использовать модифицированный ВЭЖХ-детектор для определения разделяемых веществ непосредственно в капилляре. Простота аппаратуры и возросшая потребность в разделении биомолекул привели во второй половине 80-х годов к повышенному интересу к данному методу.
Наряду с КЗЭ, при котором удается осуществить разделение только за счет разницы в подвижности, и который в настоящее время представляет собой наиболее распространенный метод, выделяют также капиллярный гель электрофорез (КГЭ) с капилляром, заполненным гелем. При этом на электрофоретическую миграцию молекул оказывает влияние матрица геля, и поэтому достигается селективное разделение молекул по размерам. Незаряженные молекулы можно разделять с помощью мицеллярной электрокинетической хроматографии (МЭКХ). В данном случае к буферу добавляется детергент, и нейтральные молекулы распределяются между буфером и мицеллами в соответствии с их гидрофобностью. Разделение основано на подвижности мицелл, заряженных в большинстве случаев отрицательно. Поскольку в основе разделения лежит процесс распределения, можно с полным основанием говорить о хроматографическом методе. При изоэлектрической фокусировке (ИЭФ) происходит разделение в градиенте pH, формируемом добавлением амфолита к буферу в электрическом поле. Небольшое распространение получила пока электрохроматография (ЭХ), при которой применяется стационарная среда ВЭЖХ, а течение эдюента и перенос пробы происходит только за счет электроосмотического потока. В качестве самой старой капиллярной техники следует упомянуть изотахофорез (ИТФ), который в настоящее время вновь приобрел значение для концентрирования проб в КЭ.
Схематическое изображение аппаратуры КЭ представлено на рис. 1. Тонкий кварцевый капилляр (25-100 мкм) длиной от 20 до 100 см соединяет два буферных сосуда, между которыми приложено напряжение около 30 кВ. Сравнительно небольшое количество пробы (несколько нл) вводится на анодном конце капилляра. Это достигается подъемом или опусканием соответствующих буферных сосудов, созданием давления в сосуде для пробы, созданием вакуума в катодном буферном резервуаре или просто за счет электрофоретической миграции пробы в капилляр. Достоинства и недостатки разных способов ввода пробы подробно обсуждаются в разделе "Аппаратура".
Рис. 1. Схема аппаратуры КЭ.
Разделение пробы достигается приложением напряжения к буферным сосудам. Возникающее в капилляре электрическое поле вызывает миграцию зоны пробы. На электрофоретическое перемещение всегда накладывается более или менее интенсивный электроосмотический поток (ЭОП), который способствует пассивному транспорту зоны пробы, а не ее разделению.
Этот ЭОП сильно зависит от значений pH буфера и от свойств поверхности капилляра. Он может быть настолько большим, что будут двигаться не только нейтральные молекулы, но даже отрицательно заряженные ионы могут перемещаться к детектору, несмотря на их электрофоретическую миграцию.
После того, как в большинстве буферов на поверхности кварцевых капилляров из-за диссоциации силанольных групп образуются отрицательные заряды, вблизи стенки индуцируются положительные заряды и электроосмотический поток направлен к катоду. Это обусловливает необходимость расположения детектора вблизи катодного пространства. ЭОП помогает переносить зоны проб к детектору настолько, что при достаточно больших значениях ЭОП к катоду могут переноситься даже анионы. Пример разделения катионных, анионных и нейтральных веществ посредством капиллярного зонного электрофореза (КЗЭ) приведен на рис. 2. При этих условиях все незаряженные молекулы перемещаются с одинаковой скоростью, равной скорости электроосмотического потока, и не могут быть разделены, в то время как разделение заряженных ионов возможно благодаря их различной электрофоретической подвижности.
Наряду с этой простейшей формой капиллярного электрофореза, существует множество его вариантов, которые будут обсуждаться в последующих разделах при рассмотрении наиболее типичных областей их применения
Рис. 2. Пример разделения нейтральных, положительно и отрицательно заряженных проб в одном опыте. Условия разделения: L=30/37 см; внутренний диаметр — 75 мкм; буфер — 33 мМ борат, pH 9.5; Е=350 В/см; детектирование УФ/214 им. (1) триметилфениламмонийбромид, (2) гистамин, (3) 4-аминопиридин, (4) бензиновый спирт, (5) фенол, (6) сирингальдегид, (7) 2-(парагидроксифенил) — уксусная кислота, (8) бензойная кислота, (9) ванилиновая кислота, (10) парагидроксибензойная кислота.
3. Электрофоретическое перемещение
Увеличивающееся напряжение и возрастающая при этом напряженность поля Е приводят к постоянному повышению скорости перемещения U (скорости электрофореза) и, вследствие этого, к более высокой скорости анализа. Электорофоретическая подвижность ионов μ связана со скоростью электрофоретического перемещения U м напряженностью поля Е соотношением:
U = μ∙E=Leff/t
Здесь Leff - эффективная длина капилляра (от входа до детектора), t — время перемещения.
Эта формула может быть преобразована с учетом равновесия сил, действующих на перемещающийся ион.
На отдельный ион действует сила Кв, ускоряющая его:
KB = z∙F∙E/NA
где F — константа Фарадея (96500 Кл/моль), z — эффективный заряд иона.
Эта сила приблизительно равна силе трения KR, которая в соответствии с законом Стокса выражается уравнением:
KR = 6∙π∙η∙r∙U
При этом η — динамическая вязкость [Па-с], r — стоксовский радиус [см]. Скорость электрофоретического перемещения U тогда может выражаться как:
U = z∙F∙E/ 6∙π∙η∙r∙NA
Если затем накладывается напряжение (обычно от 10 кВ до 30 кВ) то происходит разделение за счет различной скорости перемещения пробы в разделительном буфере. При этом ионы перемещаются в электрическом поле со скоростью, которая может быть выражена следующим уравнением:
μ = Leff/t∙E = Leff∙Lges/t∙U