Литмир - Электронная Библиотека

Из липидов наиболее полно обнаруживаются сложные эфиры пальмитиновой, линолевой и эйкозадекановой кислот, а также эфиры триглицеринов и стеролов. В экстрактах древесины дуба найдены также холестерин и стигмастерин.

Среди веществ, экстрагируемых из древесины, в наибольшем количестве представлены дубильные вещества, лигнин, редуцирующие сахара, и в меньшей степени — аминокислоты, липиды, летучие кислоты и масла, смолы, а также ферменты.

Древесина дуба содержит природные гидролизуемые фенольные вещества, представляющие собой полиэфиры фенолкарбоновых кислот и сахаров, и конденсированные, у которых молекулы соединены одна с другой углеродными связями.

Конденсированные дубильные вещества составляют многочисленную группу и представлены ароматическими спиртами и альдегидами, оксибензойными кислотами — галловой, протокатеховой, ванилиновой, сиреневой, бета-резорциновой и другими. К этой группе принадлежат также кумарин и его гликозиды, оксикоричная, феруловая, хлорогеновая, кофейная кислоты и их производные, фенольные спирты — конифериловый, кумариновый, которые образуют полимерные соединения типа лигнина, флавоноиды, катехины и лейкоантоцианы.

Характерным свойством фенольных соединений является способность к окислению, которая возрастает за счет ферментов древесины — глюкозидазы и полифенолоксидазы. Окислительные процессы в коньячном спирте проходят по свободно радикальному механизму с участием радикалов, количество которых по мере созревания спирта увеличивается в 3–5 раз.

Начало окислительного процесса характеризуется автоокислением органических соединений коньячного спирта с накоплением пероксидов и гидропероксидов. Одновременно с возникновением радикалов происходит их рекомбинация. Эти превращения определяются как цепные свободно-радикальные процессы с вырожденными разветвлениями. На начальном этапе происходит образование свободных радикалов, инициирующих цепные реакции. Часть молекул гидропероксидов распадаются на радикалы, а остальные реагируют ионным или молекулярным путем. Образующиеся радикалы инициируют новые цепи окисления, что ведет к вырождению цепей, потому, что гомолизу подвергается небольшая часть (6-10 %) молекул гидроксидов. Их распад происходит значительно медленнее скорости цепной реакции.

Гомолиз катализируется ионами переменной валентности (Cu2+, Fe3+) и происходит, в основном, гетерогенно в тонком слое на внутренней поверхности дубовых клепок. Количество свободных радикалов возрастает также в результате воздействия на дубовую клепку кислорода воздуха, гамма- и УФ-лучей и других факторов. Этот принцип положен в основу разработки новых ускоренных технологий созревания коньячного спирта.

Созревание и старение коньячного спирта сопровождается экстракцией компонентов дуба и их химическим превращением под воздействием кислорода, а также взаимодействием этих соединений друг с другом и коньячным спиртом.

На первом этапе происходит экстракция наиболее легкоизвлекаемых дубильных веществ и их интенсивное окисление, гидролиз гемицеллюлоз и появление ксилозы, арабинозы и глюкозы, образование фурфурола.

На следующем этапе экстрагирование дубильных веществ ослабевает, но происходит их дальнейшее окисление. В условиях более высокой кислотности интенсивнее протекает извлечение и этанолиз лигнина, гидролиз целлюлоз, появляется фруктоза.

С течением времени окисление танидов продолжается с образованием спиртонерастворимых продуктов, а процесс экстрагирования еще больше замедляется.

Определяющую роль в образовании коньяка играют лигнин и продукты его превращений. В процессе длительного хранения коньячного спирта в дубовой таре происходит этанолиз древесины дуба и обогащение спирта этанол-лигнином. Кислоты спирта, содержание которых по мере выдержки спирта несколько возрастает, усиливают этанолиз лигнина.

Этанол-лигнин служит источником образования кониферилового и синапового спирта, которые под действием кислорода превращается соответственно в конифериловый и синаповый альдегиды. Дальнейшее окисление этих веществ ведет к образованию ванилина, сиреневого альдегида и других компонентов коньяка, обладающих специфическим приятным ароматом и участвующих в сложении его высоких органолептических свойств. В коньячном спирте обнаружены в свободном состоянии также формальдегид, ацетальдегид, фенилацетальдегид, метилфурфурол.

Выдержанный коньячный спирт содержит 2-окси-3-метил-2-циклопентен-1-ОН, 2,5-диметил-4-окси-3(2Н) — фуранан, 2-оксиметил-5-метил-4-окси-3(2Н) — фуранон, происхождение которых связывают с распадом аскорбиновой кислоты, катализируе мом соединениями меди. Продукты дегидратации аскорбиновой кислоты обладают приятным ароматом.

Ионы меди играют и другую важную роль — они образуют с жирными кислотами, переходящими в вино из дрожжей и имеющими неприятный запах, нерастворимые соли, появляющиеся в дистилляте в конце перегонки в виде частичек масла зеленого или коричневого цвета, которые легко всплывают на поверхность спирта-сырца, откуда они могут быть удалены. По составу они представляют собой соли меди с масляной, капроновой, каприловой и лауриновой кислотами.

При этом решающее значение принадлежит дубовой древесине. Оно обусловливается двумя факторами — особенностями микроструктуры древесины, на поверхности которой и в порах протекают гидролитические процессы, и генетической связью между ее составом и веществами, образующимися в процессе созревания коньячного спирта.

Накопление эфиров при выдержке коньячного спирта зависит от исходной концентрации в нем кислоты и спирта, а также содержания ранее образовавшихся эфиров и с течением времени постепенно затухает.

Если в среде имеется много эфиров и ощущается недостаток кислот, может наступить деэтерификация, которая приведет к снижению содержания эфиров даже в выдержанном коньячном спирте.

Поэтому, качество коньячного спирта определяется не столько суммарным содержанием, сколько наличием или отсутствием специфических эфиров. Например, энантовый эфир играет важную роль в формировании органолептических показателей французских коньяков, придавая их вкусу высоко ценимый мыльный тон.

Считают, что букет коньяка, главным образом, зависит от содержания в нем окталактонов, эфиров жирных кислот и ароматических альдегидов, аромат, вкус и цвет определяются в основном дубильными веществами и низкомолекулярными компонентами лигнина.

Однако состав коньяка не ограничивается этими соединениями, а включает большое число компонентов, среди которых идентифицировано около 500 эфиров, ацеталей, карбоксильных и фенольных соединений, алифатических и ароматических кислот, кетокислот, спиртов, углеводов, сахаров, лактонов, азотосодержащих веществ.

Данные теоретические выкладки могут быть применены с небольшими исключениями к обоснованию технологий таких напитков как арманьяк, виски, ром[37], текила[38], мескаль[39], кальвадос[40], граппа[41]. Все они получаются при выдержке в дубовых бочках.

Все отличие технологий этих напитков от технологии коньяка состоит в различном исходном сырье (кроме арманьяка, который, как и коньяк, представляет собой продукт перегонки виноградного вина) для получения перегоняемого виноматериала.

ПОДВАЛ

Взяться за подбор материалов для этой страницы меня заставило убеждение в том, что нет ничего невозможного для созидательного желания.

Всего лишь несколько лет назад я был убежден в силу своего воспитания, уклада всей нашей в прошлом советской жизни, что изготовление самогона — это неблагодарное, никчемное занятие, подходящее лишь для опустившихся, спившихся людей, у кого ВСЕ деньги уходят только на выпивку. Плюс к этому употребление вонючего самогона приводит к ухудшению здоровья, а часто и с летальным исходом. Но времена меняются. Теперь я, наоборот, глубоко убежден, что не самогон, который делается для себя, а магазинная ВОДКА — яд, приносящий отравления и головную боль. По качеству производимый самогон давно уже значительно превышает ординарную водку, после употребления не мучает похмельный синдром, отсутствует сухость во рту и неприятные ощущения в желудке.

117
{"b":"870513","o":1}