Литмир - Электронная Библиотека

10. Конструирование клеток путем введения различных клеточных оганелл.

11. Генетическая трансформация на хромосомном и генном уровнях.

12. Изучение системы «хозяин — паразит» с использованием вирусов, бактерий, грибов и насекомых).

История метода

Самые ранние работы по изолированию культур принадлежат Блоцишевскому (1876), Брауну и Моррису (1892), Боннэ, Саксу (1893). В этих исследованиях зародыши вычленялись из семени и выращивались в искусственных условиях. Первым исследователем, занявшимся установлением минимального размера экспланта, был Карл Рехингер (1893). Он выращивал тонкие срезы корня свеклы и одуванчика и сегменты стебля тополя на песке с применением водопроводной воды, без стерильных условий. Эти исследования показали, что каллус образуется при толщине среза не менее 1,5 мм. Еще в 19 веке X. Фёхтинг провел ряд экспериментов, доказывающих тотипотентность клетки. При этом им убедительно показана полярность как органов, так и клеток.

Основы экспериментальной эмбриологии растений были заложены исследованиями Моссарта (1902), который наблюдал набухание завязей некоторых растений после обработки их спорами Licopodium, нежизнеспособными поллиниями и водными экстрактами пыльцы. В связи с этим было высказано предположение, что пыльцевая трубка не только обеспечивает передвижение спермиев к яйцеклетке, но и переносит в завязь ауксины, стимулирующие ее рост.

Г. Габерланд (1902) научился культивировать отдельные клетки в течение некоторого времени. Но он выбрал для культивирования зеленые клетки, изолированные из клеток палисадной паренхимы Lamium purpureum и волосков традесканции вирджинской и медуницы мягкой, резонно рассудив, что при этом отпадет потребность в источниках углеводов. Однако упустил из виду то, что ассимилирующие зеленые клетки — зрелые и высокодифференцированные, потеряли способность к меристематической деятельности. Исходное предположение автора, что содержащие хлорофилл клетки полностью обеспечивают себя питательными веществами, необходимыми для их жизнедеятельности и роста, не было подтверждено экспериментально. Габерланд также выдвинул гипотезу о тотипотентности любой живой клетки растения, которая впоследствии была подтверждена экспериментально. Ряд ученых, в том числе и его ученики, последовали его примеру и получили отрицательные результаты. Некоторые на основании этого усомнились в гипотезе тотипотентности растительных клеток. Исследования Габерландта с фотосинтезирующими клетками были неудачны, что привело к потере интереса к культивированию тканей и клеток растений. Однако они все же положили начало поиску адекватных питательных смесей и условий, необходимых для поддержания роста органов, тканей и клеток растений.

Толчком к возобновлению работ послужили исследования Гаррисона, проведенные в 1904–1907 гг. Он вырастил нейробласты лягушки в лимфатической жидкости, доказав возможность выращивания in vitro изолированных клеток. Большое влияние на направление дальнейших работ с растительными клетками оказали работы зоологов Карреля и Барроуза (1911), культивировавших ткани и клетки млекопитающих на среде сложного состава, содержащей плазму крови и экстракты эмбриональных тканей.

Французский ученый Мольяр уже в 1921 культивировал сегменты корня и гипокотиля молодых побегов редьки. Они были способны к росту в условиях культуры, но при этом не происходило формирования новых тканей.

В 1922 г. один из учеников Рехингера — Коттэ начал эксперименты с лишенными пигментов меристематическими тканями — изолированными кончиками корней, и добился успеха. Практически одновременно и независимо от Коттэ Роббинс подобрал состав питательной среды, обеспечивающий в культуре рост апикальной меристемы корня томатов и кукурузы. Эти опыты положили начало культивированию изолированных органов растений на питательных средах. Не всегда эти исследования были успешны. Под влиянием работ Карреля и Барроуза в 1927 году Прат начал культивировать клетки растений на средах с добавками растительных экстрактов. Результаты его экспериментов были отрицательны, так как он избрал неудачные объекты для исследований.

Начало длительным и удачным исследованиям по культивированию клеток и тканей растений положили работы американского исследователя Ф. Уайта и француза Р. Готре. Они показали, что изолированные органы и ткани могут расти в культуре неограниченно долгое время, если их пересаживать на свежую питательную среду. Такую же способность наблюдал Ф. Уайт для клеток опухолевого происхождения. Результаты чужих и собственных экспериментов Уайт обобщил в монографии «Культура растительных тканей», которая была переведена на русский язык и издана в СССР в 194 9 году. В ней он выделяет несколько периодов в истории развития метода культуры клеток, тканей и органов растений:

1. 1834–1900 гг. — создание и разработка клеточной теории.

2. 1900–1922 гг. — сформулирована идея культуры тканей.

3. 1922-1934 гг. — безуспешные поиски методов, обеспечивающих длительное культивирование тканей.

4. 1934-1939 гг. — детальная разработка техники культуры растительных тканей.

Период 1940–1960 гг. значительно расширил список видов, выращиваемых in vitro. В монографию Готре, вышедшую в 1959 г., включено уже 142 вида. Были разработаны составы питательных сред, изучено значение микро- и макроэлементов для поддержания нормальной ростовой активности тканей, определено влияние витаминов и стимуляторов роста. Проводились работы по выявлению значения различных натуральных экстрактов (из эндосперма кокосового ореха, каштана, кукурузы и других растений) для поддержания неорганизованного клеточного роста, а также для стимуляции органогенеза. Показано значение кинетина для пролиферации клеток in vitro и индукции стеблевого морфогенеза. Изучением этих вопросов занимались такие ученые, как Р. Хеллер, И. Нич, Ф. Скуг, Ф. Стевард, Р. Г. Бутенко. В это же время разработаны методы получения и выращивания клеточных суспензий, а также культивирования отдельной клетки, деление ко-торой индуцируется с помощью ткани-няньки.

В 1960–1975 гг. положено начало методу получения изолированных протопластов из тканей корня и плодов томатов путем обработки их смесью пектолитических и целлюлолитических ферментов. Основоположник этого метода — Э. Коккинг. Такебе с сотрудниками были определены условия культивирования изолированных протопластов, при которых они образуют клеточные стенки, делятся и дают начало клеточным линиям, способным к морфогенезу. Были разработаны методы гибридизации соматических клеток путем слияния протопластов и введения в них вирусных РНК, клеточных органелл, бактерий. В лабораториях Р. Г. Бутенко, Ю. Ю. Глебы проводились исследования поведения ядерного и цитоплазматического геномов партнеров в гибридных клеточных линиях и потомстве соматических гибридов растений — регенерантов. В этот же период были разработаны методы получения безвирусных растений из меристематических тканей. Начались эксперименты по созданию установок для глубинного культивирования клеток.

Начиная с 1976 г., разрабатывались методы электрослияния протопластов и селекции гибридных клеток, культивирования гаплоидных клеток и получения новых форм и сортов сельскохозяйственных растений. Удалось создать системы иммобилизованных клеток для получения различных химических соединений и их биотрансформации. Ведутся работы по переносу генов в растительные клетки и получению трансгенных растений.

Культуры соматических клеток

В основе культивирования растительных клеток лежит свойство тотипотентности, благодаря которому соматические клетки растения способны полностью реализовать наследственную информацию, то есть обеспечить развитие всего растения. Следует отметить, что в отличие от животной, растительная клетка предъявляет менее жесткие требования к условиям культивирования.

Изменяя условия (добавляя в состав питательной среды те или иные гормоны), можно вызвать дифференциацию недетерминированных клеток. Культура растительной ткани позволяет получить многочисленные популяции в сравнительно короткое время и в ограниченном пространстве. Клетки в условиях in vitro лишаются очень многих важных взаимодействий, которые определяют их судьбу и дифференциацию в целом организме. В определенных пределах дифференциация культивируемых клеток поддается контролю со стороны экспериментатора.

58
{"b":"870463","o":1}