Литмир - Электронная Библиотека

Состязательные атаки. Атаки реализуются посредством того, что входные данные изменяют таким образом, чтобы модель переобучилась и стала допускать ошибки в классификации. Угрозы от такого типа атак высока, поскольку подобные атаки очень эффективны, просты в реализации и масштабируемы – один и тот же метод атаки применим к различным моделям, построенным на одном алгоритме обучения.

«Отравление» данных. Такая атака проводится на этапе первичного обучения модели, когда злоумышленник вводит данные или манипулирует данными обучения, либо чтобы создать «черный ход» для использования во время эксплуатации (без ущерба для производительности модели при обычных входных данных), либо с целью добиться последующего генерирования произвольных ошибок искажая предназначение модели в процессе обучения.

В зависимости от цели злоумышленника это нарушает свойства целостности или доступности модели. Типичный пример создания «черного хода» – атака на распознавание лиц, когда злоумышленник вводит в набор обучающих образцов данные определенного объекта. Цель состоит в том, чтобы заставить модель связать конкретный объект (допустим, кепку) с целевым пользователем, например, пользователя, имеющего право доступа не территорию. Впоследствии любое изображение лица человека в кепке будет классифицироваться как пользователь, имеющих право доступа, даже если оно принадлежит не зарегистрированному в модели человеку. «Отравление» – один из самых распространенных типов атак. История «отравляющих» атак на ML началась в 2008 г. со статьи посвященной теме эксплуатации уязвимостей машинного обучения чтобы подорвать штатную работу спам-фильтров. В статье был представлен пример атаки на спам-фильтр. Позже было опубликовано более 30 других исследовательских работ об «отравлении» и защите от него.

Существуют четыре основных стратегии «отравления» данных:

1) модификация меток: атаку модификации меток злоумышленник проводит на этапе обучения модели – изменяются классификационные метки случайных экземпляров в наборах данных для обучения;

2) внедрение данных: при подобной атаке у злоумышленника нет доступа ни к данным обучения, ни и к алгоритму обучения, но у него есть возможность дополнить новыми данными обучающий набор. Таким образом можно исказить целевую модель, вставив в набор обучающих данных вредоносные образцы;

3) модификация данных: у атакующего нет доступа к алгоритму обучения, но он имеет полный доступ к данным обучения. Обучающие данные злоумышленник отравляет непосредственно путем изменения перед их использованием для обучения целевой модели;

4) разрушение логики: если у противника есть возможность напрямую вмешиваться в алгоритм обучения. Такая атака также называется логическим искажением.

Исследовательские атаки. Целью таких атак является нарушение конфиденциальности на этапе штатной работы модели. К исследовательским относят несколько типов атак: восстановление модели, восстановление принадлежности, инверсия модели, восстановление параметров. В процессе исследовательской атаки изучается модель ИИ или набор данных, которые в дальнейшем используют злоумышленники. Результат такой атаки – получение знаний о системе ИИ и ее модели, т. е. это атака для извлечения моделей. Атака на данные позволяет «добыть», в частности, сведения о принадлежности экземпляра классу (например, о наличии прав доступа на объект конкретного человека). При помощи инверсии модели извлекают конкретные данные из модели. В настоящее время исследования посвящены в основном атакам логического вывода на этапе разработки модели, но они возможны и во время обучения. Например, если мы хотим понять, как веб-сайт социальной сети определяет принадлежность к целевой аудитории, в частности к группе беременных женщин, чтобы показать конкретную рекламу, то можем изменить свое поведение, предположим, пытаясь найти информацию о памперсах, и проверить, получаем ли мы объявления, предназначенные для будущих мам.

Восстановление принадлежности экземпляра. Злоумышленник намеревается узнать, был ли конкретный экземпляр в наборе обучающих данных. Речь идет о распознавании изображений. Атакующий хочет проверить, были или нет в обучающем наборе сведения о конкретном человеке. Сам по себе это редко используемый тип разведочных атак. Однако он дает возможность разработать план дальнейших атаки, таких как атака «уклонение» класса «черный ящик». Чем больше вредоносный набор данных похож на набор данных жертвы, тем выше у злоумышленника шанс переобучить атакуемую модель. Вывод атрибута помогает узнать обучающие данные (например, об акценте ораторов в моделях распознавания речи). Успешная атака на восстановление принадлежности показывает, насколько соблюдается конфиденциальность, в частности персональных данных, разработчиками моделей ИИ.

Инверсия модели. На сегодняшний день является наиболее распространенным типом разведочных атак. В отличие от восстановления принадлежности, когда можно всего лишь угадать, был ли пример в наборе обучающих данных, при инверсии модели злоумышленник пытается извлечь из обучающего набора данные в полном объеме. При работе с изображениями извлекается определенное изображение. Например, зная только имя человека, злоумышленник получает его (ее) фотографию. С точки зрения конфиденциальности это большая проблема для любой системы, обрабатывающей персональные данные. Известны также атаки на модели ИИ, которые используются для оказания помощи в лечении в зависимости от генотипа пациента.

Восстановление параметров модели. Цель подобной атаки – определить модель ИИ и ее гиперпараметры для последующих атак типа «уклонение» класса «черный ящик». При этом восстановленные параметры модели используют, чтобы увеличить скорость атак. Одна из первых работ о таких атаках была опубликована в 2013 г. («Взлом умных машин при помощи более умных: как извлечь значимые данные из классификаторов машинного обучения»).

Кроме основных типов атак, выделяют атаки backdoors и trojans. Цели этих атак и типы атакующих различны, но технически они очень похожи на атаки «отравления». Разница заключается в наборе данных, доступных злоумышленнику.

Троянские атаки (trojans). Во время отравления злоумышленники не имеют доступа к модели и начальному набору данных, они могут только добавить новые данные в существующий набор или изменить его. Что касается трояна, то злоумышленники все еще не имеют доступа к начальному набору данных, но у них есть доступ к модели и ее параметрам, и они могут переобучить эту модель, поскольку в настоящее время компании, как правило, не создают свои собственные модели с нуля, а переобучают существующие модели. Например, если необходимо создать модель для обнаружения рака, злоумышленники берут новейшую модель распознавания изображений и переобучают при помощи специализированного набора данных, поскольку отсутствие данных и изображений раковых опухолей не позволяет обучать сложную модель с нуля. Это означает, что большинство компаний-разработчиков загружают популярные модели из интернета. Однако хакеры могут заменить их своими модифицированными версиями с идентичными названиями. Идея трояна заключается в следующем: найти способы изменить поведение модели в некоторых обстоятельствах таким образом, чтобы штатное поведение модели оставалось неизменным. Сначала хакеры объединяют набор данных из модели с новыми входными данными и уже на объединенном наборе переобучают модель. Модификация поведения модели («отравление» и трояны) возможна даже в среде «черного ящика» и «серого ящика», а также в режиме полного «белого ящика» с доступом к модели и набору данных. Тем не менее главная цель – не только ввести дополнительное поведение, но и сделать это таким образом, чтобы заложенная уязвимость (бэкдор) работала после дальнейшей переподготовки системы добросовестными разработчиками.

«Черный ход» (Backdoor). Идея такой атаки взята от одной из самых старых ИТ-концепций – бэкдоров. При разработке моделей ИИ исследователи закладывают в нее и общий, базовый функционал, и возможность дальнейшего переобучения. С целью маскировки атаки по завершению несанкционированного переобучения модель должна сохранить базовый функционал. Это достижимо за счет того, что нейронные сети, например, для распознавания изображений, представляют собой масштабные структуры, образованные миллионами нейронов. Чтобы внести изменения в такой механизм, достаточно модифицировать лишь небольшой их набор. Еще один фактор, делающий возможным атаку «черного хода», заключается в том, что модели распознавания изображений, например Inception или ResNet, крайне сложны. Они обучены на огромном количестве данных, для чего использовались дорогостоящие вычислительные мощности. Провести аудит и выявить черный ход крайне затруднительно.

6
{"b":"853384","o":1}