В Линкольне мы находим более привлекательную личность: достаточно амбиций, чтобы попытаться, и достаточно смирения, чтобы признать поражение.
Что Линкольн позаимствовал у Евклида – так это идею, что при известной осторожности вы сможете возвести высокое прочное здание убеждений и согласия с помощью строгих дедуктивных шагов, этаж за этажом, на фундаменте аксиом, в которых никто не может усомниться, или, если хотите, истин, которые кажутся самоочевидными. Тот, кто не считает их таковыми, исключается из дискуссии. Я слышу отголоски Евклида в самом знаменитом выступлении Линкольна – Геттисбергской речи, где он говорит, что Соединенные Штаты убеждены в истинности утверждения, что все люди рождены равными. Слово утверждение (proposition)[30] – это термин, используемый Евклидом для высказываний, логически вытекающих из самоочевидных аксиом, которые просто нельзя рационально отрицать.
Линкольн не первый американец, искавший основы демократической политики в терминологии Евклида; раньше это делал любивший математику Томас Джефферсон. Линкольн отмечал в письме, прочитанном в Бостоне в 1859 году на торжественной церемонии в память о Джефферсоне, где он не смог присутствовать:
Можно с уверенностью утверждать[31], что человек может убедить любого здравомыслящего ребенка в том, что простые утверждения Евклида истинны; но тем не менее в итоге он потерпит неудачу с тем, кто будет отрицать определения и аксиомы. Принципы Джефферсона – это определения и аксиомы свободного общества.
В юности Джефферсон изучал Евклида в колледже Вильгельма и Марии и с тех пор высоко ценил геометрию[32]. Уже будучи вице-президентом, Джефферсон нашел время, чтобы ответить на письмо учащегося из Вирджинии о предполагаемом плане академического обучения, где пишет: «Тригонометрия в известном смысле имеет наибольшую ценность для каждого человека, и едва ли найдется день, когда он не станет прибегать к ней для каких-нибудь надобностей повседневной жизни (хотя большую часть высшей математики он описывает так: “Всего лишь роскошь[33], действительно восхитительная роскошь; не для тех, кому приходится иметь занятие ради пропитания”)». В 1812 году, уйдя из политики, Джефферсон писал своему предшественнику на посту президента Джону Адамсу:
Я отказался от газет в обмен на Тацита и Фукидида, Ньютона и Евклида и чувствую себя гораздо счастливее[34].
Здесь мы видим реальную разницу между двумя президентами-геометрами. Для Джефферсона Евклид был частью классического образования, необходимого для культурного джентльмена наряду с греческими историками и учеными эпохи Просвещения. Однако с Линкольном – самоучкой, выросшим на ферме, – ситуация обстояла иначе. Вот как преподобный Гулливер описывает Линкольна, вспоминающего свое детство:
Припоминаю, как уходил в свою маленькую спальню после того, как слышал вечерние разговоры соседей с моим отцом, и немалую часть ночи расхаживал взад и вперед, пытаясь понять точный смысл некоторых, на мой взгляд, мрачных фраз. Когда я преследовал какую-то идею, я не мог заснуть, хотя часто пытался, пока не ловил ее; а когда я считал, что поймал, то не удовлетворялся этим, а повторял ее снова и снова, пока не выражал на языке, достаточно ясном, как мне казалось, для любого знакомого мне мальчишки. Это была своего рода страсть, и она осталась со мной, поскольку мне всегда нелегко справиться с какой-то мыслью, пока я не ограничу ее с севера, юга, запада и востока. Возможно, этим объясняются те характерные особенности, которые вы наблюдаете в моих выступлениях.
Это не геометрия, но это взгляды геометра. Вы не оставляете вещи понятыми наполовину, а точно формулируете свои мысли и следите за ходом своих рассуждений точно так же, как Гоббс с изумлением следил за Евклидом. Линкольн считал такого рода систематическое самовосприятие единственным выходом из сумятицы и темноты.
Для Линкольна, в отличие от Джефферсона[35], стиль Евклида – вовсе не то, что пристойно джентльмену или профессору с академическим образованием, поскольку Линкольн не был ни тем ни другим. Это бревенчатая хижина разума, построенная вручную. Если построить ее правильно, она выдержит любые испытания. И она может принадлежать кому угодно в стране, задуманной Линкольном.
ЗАСТЫВШАЯ ФОРМАЛИСТИКА
Представление Линкольна о геометрии для американских масс, как и многие другие его хорошие идеи, было реализовано лишь частично. К середине XIX века геометрия переместилась из колледжей в старшие классы школ, однако в типичном курсе Евклид стал чем-то вроде музейного экспоната: его доказательства следовало запомнить, воспроизвести и в какой-то степени оценить. О том, как кто-то их придумал, не было и речи. Сам создатель доказательств практически исчез: один писатель того времени заметил, что «многие молодые люди[36] читают шесть книг “Начал”, прежде чем случайно узнают, что Евклид – это не название предмета, а имя человека, который о нем написал». Таков парадокс образования: то, чем мы больше всего восхищаемся, мы укладываем в коробочку и засовываем ее в ящик.
Честно говоря, об историческом Евклиде сказать почти нечего, поскольку нам о нем практически ничего и не известно. Он жил и работал в большом городе Александрия в Северной Африке примерно за 300 лет до нашей эры. И это все, что мы знаем. Его «Начала» – это собрание знаний по геометрии греческих математиков того времени; на десерт в конце книги добавлены основы теории чисел. Значительная часть материала была известна математикам еще до Евклида, но радикально новым и революционным шагом стала организация этого массива знаний. Из небольшого количества аксиом, в которых почти невозможно сомневаться[37], шаг за шагом выводится весь аппарат теорем о треугольниках, прямых, углах и окружностях. До Евклида – если это и правда был Евклид, а не целый коллектив геометров из Александрии, творивший под этим псевдонимом, – такую структуру было невозможно представить. Зато впоследствии она стала моделью для всего замечательного в знании и мышлении.
Конечно, существует и другой способ преподавать геометрию, который делает упор на изобретательность и пытается поместить учащегося в кресло Евклидова пилота, чтобы тот мог самостоятельно создавать определения и смотреть, что из них получится. Один из таких учебников, «Изобретательная геометрия», исходит из предпосылки, что «единственное настоящее образование – это самообразование». Не смотрите на конструкции других людей, советует книга, «по крайней мере пока не откроете собственную конструкцию», – и вы не будете беспокоиться и сравнивать себя с другими учениками: все занимаются в собственном темпе, и вы с большей вероятностью усвоите материал, если вам нравится им заниматься. Сама книга – всего лишь последовательность из 446 головоломок и задач. Одни достаточно просты: «Можете ли вы нарисовать три угла двумя прямыми линиями? А четыре угла двумя прямыми линиями?» У других, как предупреждают авторы, на самом деле не может быть решения, и вы оказываетесь в положении настоящего ученого[38]. А третьи, как и самый первый из вопросов, и вовсе не имеют четкого «правильного ответа»: «Поставьте куб[39] на стол гранью к себе и скажите, что вы считаете толщиной, что – шириной, а что – длиной»[40]. В целом это всего лишь своего рода «ориентированный на ребенка» исследовательский подход, который высмеивают традиционалисты, считая несоответствующим современному образованию. Книга вышла в 1860 году.