Литмир - Электронная Библиотека

Чувствительные усилители помогают обнаружить хаотическое напряжение, связанное с хаотическим движением электронов: после усиления оно слышится как ровный шум в громкоговорителе приемника или видно как мерцание экрана телевизора, когда телевизионная станция не работает.

Общеизвестно, что существуют электрические выпрямители, пропускающие электрический ток только в одном направлении. Значит, рассуждал профессор, такой детектор способен пропускать и «хаотические» электроны только в одном направлении задерживая идущие в обратном направлении. При этом детектор будет превращать хаотическое тепловое движение электронов в постоянный электрический ток! И осуществится небывалое: по проводам потечет ток без затраты электрической энергии.

Автор этого перпетуум-мобиле решил, что он нашел способ преобразовывать хаос в порядок. Нащупал возможность превращения хаотического теплового тока в упорядоченный постоянный ток. Черпать электроэнергию непосредственно из тепла окружающего воздуха. Попутно это давало неплохой подарок науке: получалось, что Второе начало термодинамики неверно.

Профессор ставил опыты в лаборатории своего института и дома, отдавал им все свободное время, пытаясь воплотить свою мечту в реальное устройство. Но результат почему-то всегда был отрицательным. Но всегда оставалась надежда на то, что в следующий раз, если принять еще какие-то меры…

Обычная надежда творцов вечных двигателей… И в этом случае она оказалась эфемерной…

Однако заблуждение профессора не прошло бесполезно. Много лет спустя один из друзей неудачника, тоже известный радиофизик, член-корреспондент Академии наук СССР, понял корни его заблуждений, осветив еще одну особенность, еще один лик тепла.

Он показал и подтвердил это точным расчетом, что ошибка и ложная надежда возникли из-за того, что при рассуждениях учитывались лишь тепловые движения электронов в проводнике. Не принималось в расчет то, что происходит в самом детекторе. Точный анализ показал, что без разности температур в замкнутом проводнике, содержащем детектор, тепловые движения электронов не вызывают постоянного электрического тока. Что при равенстве температур детектора и проводника никакого регулярного тока не возникнет. Только в том случае, если проводник нагрет неравномерно, возникнет регулярный ток. Электрическая энергия при этом вырабатывается за счет тепловой энергии в процессе выравнивания температуры горячей и холодной частей системы. Если поддерживать разность температур при помощи внешнего источника тепла, мы будем иметь дело с одной из тепловых машин — с теплоэлектрическим генератором или термоэлементом, полностью подчиняющейся обоим началам термодинамики. О даровой электрической энергии и речи быть не может. За нее надо платить теплом.

И еще один современный пример увлечения вечным двигателем второго рода.

Заблуждение в этом случае скорее всего началось с размышлений о безвозвратных потерях тепла в мировом пространстве. Как ни топи помещение, а тепло уходит через окна, стены, пол, потолок! Не обидно ли топить улицу? И нельзя ли как- нибудь забирать обратно у зимней стужи награбленное ею добро? Фактически нечто подобное осуществляет наш комнатный холодильник. Отбирая тепло от морозильной камеры с продуктами, он через внешний теплообменник передает это тепло воздуху комнаты. Нарушается ли при этом Второй закон термодинамики? Нет. Переход тепла от холодного к теплому идет с затратой электроэнергии — холодильник питается от электросети.

А нельзя ли вынести морозильную камеру наружу, за стенку дома, а теплообменник, обычно расположенный на задней стенке холодильника, оставить внутри комнаты? И, отбирая тепловую энергию не от продуктов, а от воздуха, окружающего морозильную камеру, перекачивать эту энергию в комнату?

Кое-кто, возможно, помнит события десятилетней примерно давности — шумиху по поводу работ одной лаборатории, помещавшейся в Бабьегородском переулке в Москве. Речь шла о чудо-приборе, позволяющем отапливать дома за счет тепла, отобранного у зимнего воздуха. Сенсация вызвала немалый интерес, возрождая надежды на получение неограниченных количеств бесплатной энергии.

Не дешевой, а именно бесплатной!

Прежде чем отмахнуться от этого перпетуум-мобиле, попробуем найти то звено в рассуждениях, которое сбило с пути его творцов. Проведем три мысленных эксперимента, предварительно включив в небольшой комнате электрическую плитку мощностью в один киловатт. Элементарный расчет подскажет нам, что плитка, превращая электрическую энергию в тепловую, будет отдавать в комнату до двухсот сорока калорий каждую секунду. Будем считать, что скорость повышения температуры комнаты будет при этом равна одному градусу в секунду. Конечно, такой быстрый подъем температуры не может длиться долго из-за всевозрастающей утечки тепла. Но для простоты ограничимся лишь начальным периодом.

Теперь выключим плитку и приступим к нашим экспериментам.

Опыт первый.

Внесем в комнату кондиционер мощностью в один киловатт. (Кондиционер подобен холодильнику, он в жаркую погоду откачивает тепло из охлаждаемого помещения в более теплое окружающее пространство, чтобы в комнате стало прохладнее, чем на улице).

Включив кондиционер в электросеть, мы убедимся в том, что с одной стороны из него выходит охлажденный воздух, а с другой стороны — нагретый. Температура в комнате при этом поднимается на градус в секунду (как и в случае с электроплиткой). Повышения температуры следовало ожидать, так как вся энергия, потребляемая кондиционером от электросети, в конце концов превращается в тепло и рассеивается в комнате.

Опыт второй.

Используем кондиционер по его прямому назначению. Установим его в проем окна так, чтобы холодный воздух шел в комнату, а нагретый наружу. Теперь температура в комнате понижается — теплообменник кондиционера находится за окном и отдает все выделяющееся тепло внешнему воздуху, в то время как холодильный элемент отнимает тепловую энергию у воздуха, находящегося в комнате. Для передачи тепла от охлажденного воздуха комнаты к жаркому летнему воздуху улицы приходится расходовать энергию в полном соответствии с законами термодинамики. Если тепловая эффективность кондиционера составляет пятьдесят процентов, то температура в комнате будет понижаться на полградуса в секунду.

Опыт третий.

Перевернем кондиционер так, чтобы нагретый воздух шел в комнату, а холодный наружу — воздух в комнате начнет нагреваться.

Фактически кондиционер при этом играет роль электроплитки, но он нагревает комнату быстрее, чем электроплитка равной мощности. Температура поднимается со скоростью полтора градуса в секунду. Для получения такого результата от электрической плитки понадобились бы полтора киловатта, а в нашем опыте электрический счетчик показывает, что кондиционер потребляет свою обычную норму — киловатт!

Мы встретились с удивительной ситуацией, противоречащей нашему первому опыту с электроплиткой: на каждый затраченный киловатт в комнату ежесекундно вносится не двести сорок калорий тепла, а триста шестьдесят. Но ничего противоречащего законам природы здесь нет. Чуда не происходит. Просто в отличие от электроплитки, которая обогревает комнату только за счет потребляемой из сети электроэнергии, кондиционер дополнительно перекачивает тепловую энергию с улицы, отбирая ее у внешнего воздуха. Итак, прокомментировали бы этот опыт теплотехники из Бабьегородского переулка, мы научились на каждый затраченный киловатт электроэнергии получать не 240, а 360 калорий тепла. Выигрыш — полтора к одному, кпд —150 процентов. Теперь сделаем следующий шаг. Превратим даровое тепло в электроэнергию. Что для этого нужно сделать? Для этого достаточно применить тепловую машину, которая будет ежесекундно преобразовывать триста шестьдесят калорий, полученных от кондиционера, в электроэнергию. Тогда исходя из полученного выигрыша 1:1,5, затрачивая ежесекундно один киловатт, мы будем получать полтора киловатта.

Итак, мы богачи. Расходуя один киловатт на поддержание работы кондиционера, мы сможем использовать лишнюю половину киловатта на другие нужды. Теперь дело за инженерами. Пусть они создадут огромный кондиционер мощностью в миллион киловатт и тепловую машину в полтора миллиона киловатт, соединят их между собой и — все разговоры об энергетическом кризисе канут в вечность…

87
{"b":"837638","o":1}