Литмир - Электронная Библиотека

Через год идеи московского теоретика откликнулись громким эхом на японских «островах. Хидэки Юкава пошел вслед за Таммом. Ход его мысли был прост. «Да, очевидно, Тамм прав — необычайные ядерные силы возникают благодаря необычному механизму, но столь же очевидно, что протоны и нейтроны обмениваются и связываются какими-то другими частицами, а не электронами и нейтрино». Двадцативосьмилетний японский теоретик рассуждал как сын своего века, когда стал искать нужные для теории частицы. Он вспомнил Эйнштейна, который тридцать лет назад первым принял всерьез кванты Планка — поверил в их физическую реальность.

Юкава представил себе, что протоны и нейтроны окружены неизвестным силовым полем точно так же, как движущиеся заряды окружены полем электромагнитных сил. Конечно, эти ядерные поля своеобразны — могучи и как бы «резко ограничены» в пространстве. Но почему бы не допустить, что и на них распространяются квантовые представления Эйнштейна?

Фотоны — кванты энергии электромагнитного поля. Иными словами, порции материи этих полей. Наверное, и ядерная энергия существует в виде порций — квантов ядерного силового поля, в виде микрокентавров, которых можно было бы назвать «ядронами». И, как фотоны, эти кванты тоже совершенно реальны. Вот и все! Они-то, вероятно, и есть те частицы, которыми перебрасываются и связываются протоны и нейтроны. Этими ядерными квантами надо заменить в схеме Тамма слишком «слабые» электрон и нейтрино.

Каковыми же должны быть такие частицы?

Юкава, разумеется, тоже начал считать.

И вот получилось, что кванты ядерных полей в отличие от фотонов должны обладать реальной — не нулевой — массой покоя. Другими словами, они не могут двигаться со скоростью света. Юкава так и назвал их — «тяжелые фотоны», И, кроме того, они должны быть очень недолговечны, — должны, очевидно, распадаться на те самые электрон и нейтрино, о которых думал Тамм. Для среднего времени жизни этих неведомых частиц у Юкавы получилась величина порядка миллионной доли секунды (10-6). А для массы покоя — величина в 200–300 раз большая, чем масса электрона. И, наконец, у них есть заряд — плюс или минус.

Портрет неизвестной частицы был начертан, оставалось «узнать ее в лицо»: открыть среди обитателей микромира.

В то время, в середине тридцатых годов, список элементарных частиц был еще очень короток. Три частицы, создающие все атомы: электрон, протон, нейтрон. Частицы, представляющие энергию-массу света: фотоны. И еще позитроны: положительно заряженные близнецы электронов, в паре с которыми они рождаются, когда гибнет достаточно большой по своей массивности фотон. (Помните, нас беспокоил вопрос, что происходит с фотоном, когда он под угрозой гибели тормозится? Вот это и происходит в подходящих условиях: он порождает новые частицы.) Существование нейтрино еще нуждалось в лабораторном доказательстве.

Такова была добыча экспериментаторов и теоретиков за сорок лет пристального изучения микромира и его обитателей — пять открытых элементарных частиц и одна проблематическая! К нынешним дням этот список вырос более чем в пять раз. Так, может быть, образ рога изобилия, встретившийся нам в самом начале книги, был не таким уж страшным преувеличением?

Но всего интересней, что тогда, в 1935 году, физики еще не знали ни одной частицы, промежуточной по массе между легоньким электроном и тяжелым протоном. Казалось, природа и не позаботилась заполнить эту зияющую брешь. Казалось, что для создания всего разнообразия мира ей и не нужны были никакие другие частицы, кроме уже известных.

Юкава предсказал: есть элементарные частицы тяжелее электрона и легче протона, наделенные удивительным свойством краткости своего бытия.

Кстати, так ли удивительно это свойство? Стоит заговорить о мире элементарных частиц тем языком, каким люди говорят о мире живых существ, и эта краткость жизни ядерных квантов покажется вполне оправданной. Ведь если они есть в природе, то понадобились ей лишь для того, чтобы могли осуществляться могучие ядерные взаимодействия. А эти взаимодействия происходят на таких малых расстояниях, что у квантов ядерного поля нет прямой нужды далеко путешествовать, а следовательно, и долго жить. (Только, пожалуйста, не воспринимайте это как строгое научное объяснение краткости бытия частиц, предсказанных Юкавой. Это замечание между делом, для наглядности, для того, чтобы хоть на ощупь ориентироваться во тьме непонятностей природы.)

Хидэки Юкава предсказал еще, что его частицы должны появляться во вторичных космических лучах: когда первичные наносят мощные удары по земной атмосфере, атомные ядра в молекулах воздуха могут испытывать внутренние превращения и «выплескивать» в пространство энергию своих ядерных полей. Брызги этой энергии — ядерные кванты. Двигаясь с громадными скоростями, они могут успеть, несмотря на краткость жизни, пролететь до распада немалые расстояния. Значит, их можно поймать.

Прошло два года. Однажды американский физик Андерсон, — работавший со своим сотрудником Неддермайером, увидел на фотоснимке туманный след, прочерченный в камере Вильсона необычной частицей. Почуяв эту необычность, он решил провести детальные измерения и подсчеты. Кривизна, длина и массивность следа свидетельствовали, что на сей раз тоннель из тумана проложил строитель-тяжеловес, по сравнению с электроном, и строитель-легковес, по сравнению с протоном. Его масса была примерно в 200 раз больше электронной и примерно в девять раз меньше протонной.

По извечной традиции ученых — отыскивать в мертвых языках классической древности корни для научных терминов, Андерсон дал новой частице греческое имя: «мезотрон», или «мезон» (от слова «мезос». — промежуточный, средний, ибо такова была масса обнаруженной частицы).

Потом вспомнили, что еще в 1933 году немецкий экспериментатор Кунце опубликовал фотографию непонятного следа в точности того же типа, что и след андерсоновского мезона. Но тогда на нее не обратили никакого внимания, подумали: «Наверное, просто ошибка опыта…» А все потому, что не ждали! Сам автор несостоявшегося открытия не ждал в ту пору, что какие-то еще неизвестные элементарные частицы могут поведать ему о своем существовании. Повторилось то же, что незадолго до того случилось с позитроном. Его открыл в 1932 году все тот же счастливый мастер эксперимента Карл Дэвид Андерсон. Но впервые след позитрона наблюдал еще в конце двадцатых годов Дмитрий Владимирович Скобельцын. Экспериментатор столь же высокого класса, он, однако, не ждал этого следа и не поверил в него…

Скоро масса покоя андерсоновского мезона была установлена с большою точностью: около 207 электронных масс. И, конечно, оказался он неустойчивым. Время его жизни было хорошо измерено: около двух миллионных долей секунды (2·10-6). И обнаружились мезоны обоих зарядов: отрицательные, как электрон, и положительные, как позитрон. И, наконец, космические лучи действительно обернулись настоящим природным заповедником мезонов.

Это был, между прочим, интереснейший факт. В нем неожиданно нашла яркое подтверждение теория относительности. Приятно сознавать, что после предыдущих глав мы уже можем по достоинству оценить происшедшее. А произошло вот что…

Физики убедились: мезоны рождаются при ядерных превращениях на довольно большой высоте — где-то в стратосфере. Тем не менее эти мезоны успевают, не распавшись, долететь до самой Земли. Их регистрировали в камерах Вильсона на уровне моря и даже глубоко под водой. Как это возможно, если время их жизни — две миллионных секунды? Конечно, летят они с колоссальными скоростями. Их энергия громадна. Оттого они и способны беспрепятственно пронизывать внушительные толщи вещества. Но все-таки, как бы ни была велика скорость мезонов, она меньше скорости света: у них есть масса покоя. А свет за две миллионных секунды проходит всего 600 метров. Вот и получается, что даже самые быстрые мезоны, родившись в стратосфере, там же должны были бы и распасться, успев приблизиться к Земле всего на каких-нибудь полкилометра. Между тем они умудряются проделать путь в 5," 10, 15 километров и. только потом гибнут. Что ж это значит?

41
{"b":"833680","o":1}