Литмир - Электронная Библиотека
A
A

Посреди всего этого смятения и невзгод возникла жизнь. Смятения и невзгоды выкормили ее, вынянчили, устремляли ее рост и способствовали ее росту и становлению. Жизнь возникла в глубочайших безднах океана, где края литосферных плит врезаются в земную кору и где струи перегретой воды, богатой растворенными минералами, под чудовищным давлением изливаются из трещин океанического ложа.

Первые формы жизни были не более чем пенистыми мембранами, затягивавшими крошечные щели в скалах. Они образовывались, когда восходящие потоки, становясь турбулентными, дробились на водовороты и, теряя мощь, оставляли свой богатый минералами груз[4] в порах и щелях скал. Такие мембраны были несовершенны и похожи на решето. Словно решето, одни вещества они пропускали, а другие – нет. Но содержимое даже столь несовершенных мембран становилось иным – это был уже не бушующий снаружи вихрь, а нечто более размеренное, более упорядоченное. Старый сруб – одни стены да крыша – все же убежище от бушующей снаружи бури, пусть даже дверь провисла и ставни гремят на ветру. Мембраны обратили свои недостатки в достоинства, впуская через поры питательные вещества и энергию и выбрасывая отходы[5].

Укрывшись от химического шума бурлящего мира, эти тихие заводи стали оплотом порядка. Постепенно они отточили производство энергии, благодаря которой смогли отпочковывать маленькие пузырьки, заключенные в долю родительской мембраны. Беспорядочный вначале, этот процесс постепенно становился все более предсказуемым по мере того, как сформировалась внутренняя химическая матрица, которую можно было копировать и передавать новым поколениям ограниченных мембраной пузырьков. В результате новые поколения оказывались более или менее верными копиями своих родителей. Более эффективные пузырьки начали процветать – за счет своих менее организованных сородичей.

Эти простые пузырьки нашли способ остановить, пусть временно и с большими усилиями, в иных случаях непрерывный рост энтропии – общего количества хаоса во Вселенной, – шагнув на порог врат жизни. Такова глубинная суть жизни. Пенящийся первичный бульон бросил вызов безжизненному миру[6].

Самая, пожалуй, восхитительная черта жизни – помимо самого факта ее существования – скорость ее появления. Спустя лишь 100 миллионов лет после формирования Земли как таковой жизнь пробудилась в вулканических глубинах, когда на юную планету из космоса все еще обрушивались тела таких же размеров, как и приведших к появлению крупнейших ударных кратеров на поверхности Луны[7]. Уже 3,7 миллиарда лет назад жизнь выбралась из вечной тьмы морских глубин в залитые солнечным светом поверхностные воды[8], а 3,4 миллиарда лет назад неисчислимые сонмы живых существ начали скапливаться, создавая видимые из космоса рифы[9]. Жизнь окончательно освоилась на Земле.

Те рифы, впрочем, не были коралловыми – до появления кораллов оставалось еще почти 3 миллиарда лет. Первые рифы состояли из тончайших слизистых нитей и пленок зеленоватого цвета, образованных микроскопическими цианобактериями (синезелеными водорослями) – теми же организмами, сплошными синевато-зелеными слоями которых в жаркую погоду зарастают лужи и пруды. Такими же слоями они покрывали в те далекие времена скалистые и песчаные участки мелководья. Штормы засыпали эти слои песком, но водоросли нарастали вновь, чтобы быть засыпанными следующим штормом. Так день за днем, год за годом нарастали подушкообразные холмы из чередующихся слоев слизи и отложений. Эти похожие на холмы образования – строматолиты – станут самыми успешными и долгоживущими формами жизни, когда-либо обитавшими на нашей планете: их безоговорочное господство продлится 3 миллиарда лет[10].

Жизнь зародилась в мире теплом[11], но безмолвном (не считая шелеста ветров и волн). Дуновение ветра вовсе не было свежим: кислорода в воздухе практически не было. В отсутствие защитного озонового слоя солнечный ультрафиолет стерилизовал все, что не было упрятано хотя бы на несколько сантиметров в воду. Цианобактерии, образующие колонии, вынужденно обзавелись защитными пигментами, поглощающими эти лучи. Поглотив энергию излучения, ее можно было на что-то потратить – что цианобактерии и сделали, приспособив ее для химического синтеза. Среди «подогретых» химических реакций были и такие, в результате которых атомы углерода, водорода и кислорода соединялись в молекулы сахаров и крахмала. Этот процесс называется «фотосинтез». Вред был обращен во благо.

Пигмент, улавливающий световую энергию в современных растениях, называется «хлорофилл». Энергия поглощенного света используется для разделения молекулы воды на составляющие ее атомы кислорода и водорода, которые вступают в последовательность химических реакций. Но во времена юности Земли исходными материалами с таким же успехом могли быть и минералы, содержащие железо или серу, хотя наилучшим выбором все равно оставалось самое доступное вещество – вода. Впрочем, этот вариант очень коварен. При использовании воды в качестве «рабочего тела» фотосинтеза образуется побочный продукт. Это газ без цвета и без запаха, сжигающий все на своем пути. Этот газ – одно из опаснейших веществ во Вселенной. Как он называется? Верно – О2, свободный кислород.

Для возникших в океане и живших под пологом бескислородной атмосферы первых живых существ появление кислорода стало катастрофой. Конечно, откровенно говоря, когда цианобактерии только открыли для себя кислородный фотосинтез – это произошло около 3 миллиардов лет назад, возможно, чуть раньше, – кислорода они выделяли немного. Совсем немного. В следовых количествах, если быть совсем точным. Но кислород – сила настолько серьезная, что даже его следы оказались смертельными для живших тогда существ. Даже эти едва ощутимые дуновения кислородного ветра привели к первому (из многих) массовому вымиранию в истории нашей планеты. Поколение за поколением древнейшие обитатели Земли сгорали в пламени фотосинтеза.

Свободного кислорода стало больше во времена кислородной катастрофы, или «кислородной революции» – неспокойного периода, начавшегося примерно 2,4 миллиарда лет назад и завершившегося около 2,1 миллиарда лет назад. Концентрация кислорода в атмосфере сначала быстро росла, достигнув величин, превышающих сегодняшний уровень 21 %, а затем, по непонятным пока причинам, упала ниже 2 %. И хотя по нынешним меркам этого все равно совершенно недостаточно для дыхания, но на древнюю экосистему это оказало грандиозное влияние[12].

Всплеск тектонической активности унес под морское дно обширные накопления богатых углеродом органических осадков – останков многих поколений живых существ, надежно спрятав их от доступа кислорода. Благодаря этому в атмосфере осталось много кислорода, который мог вступить в реакцию со всем, с чем соприкасается. От кислорода не укрылись даже скалы – железо в них превратилось в ржавчину оксидов, а углерод – в известняк.

В то же самое время из атмосферы исчезли метан и углекислый газ, поглощенные массой новообразованных горных пород. Метан и углекислый газ – два основных компонента того атмосферного «одеяла», которое сохраняет тепло Земли. Они способствуют так называемому «парниковому эффекту», и без них планету накрыло первое – и сильнейшее в ее истории – оледенение. Ледники простерлись от полюса до полюса, покрыв всю Землю на долгие 300 миллионов лет. Но жизнь на Земле пережила обе эти апокалиптические катастрофы – и «кислородную революцию», и Землю-«снежок». Многие создания погибли, но остальных невзгоды лишь подтолкнули к дальнейшему развитию.

вернуться

4

Поскольку эта книга больше повествование, чем научный труд, то в ней я буду говорить о вещах разной степени доказанности. Пожалуй, обстоятельства возникновения жизни – наиболее туманные из всего моего повествования, кроме разве что значительной части главы 12. Обсуждение этого вопроса приближается к методу научного тыка. Отчасти проблема заключается в том, что крайне сложно дать определение самому понятию «жизнь» – эта тема затронута Карлом Циммером в его книге «Границы жизни» (Zimmer C. Lifes Edge. Random House, 2020).

вернуться

5

Мембраны, в частности, накапливают электрическую энергию и позволяют ей рассеиваться, выполняя полезную работу – например запуская химические реакции. Именно так работает батарейка. Электричество было основой жизни тогда точно так же, как и сейчас. Его мощь удивительна. Учитывая, что разность зарядов внутри и снаружи клеток измерима, но расстояние это ничтожно, разность потенциалов оказывается очень большой – порядка 40–80 мВ (милливольт). Ник Лейн в своей книге очень живо рассказывает о вкладе электрического заряда в зарождение жизни и во многое другое. См.: Lane Nick. The Vital Question. L.: Profile, 2005 (Лейн Н. Вопрос жизни: энергия, эволюция и происхождение сложности / Пер. с англ. Ксении Сайфулиной и Матвея Колесника. М.: АСТ; Corpus, 2018).

вернуться

6

Представьте себе подростков, рассудочность и сознательность к которым приходит, лишь когда они сеют хаос вокруг себя.

вернуться

7

Сохранившиеся с первых дней Земли древнейшие породы имеют возраст от 3,8 до 4 миллиардов лет, хотя крошечные, но очень долговечные кристаллы минерала циркона могут быть старше 4,4 миллиарда лет. Они образовались при выветривании еще более древних пород, с тех пор исчезнувших без следа. Иногда в этих древних цирконах встречаются признаки – призраки воспоминаний о мимолетной тени – того, что этим же путем прошла и жизнь. Живой материи свойственна особая химия, основанная на атомах углерода. Почти все атомы углерода относятся к разновидности – изотопу – углерод-12, но всегда есть очень небольшое количество атомов чуть более тяжелого углерода-13. Химические реакции в живых организмах отторгают углерод-13, поэтому живая материя обогащена углеродом-12 по сравнению с ее неорганическим окружением. Это обогащение можно измерить. Древнейшие горные породы, содержащие углерод с меньшей, чем ожидалось, долей углерода-13, возможно, свидетельствуют о существовании в те времена жизни, даже если от нее не осталось никаких остатков тел – так же, как висящая в воздухе улыбка Чеширского кота однозначно говорит, что он только что был тут. На такого рода доказательства опираются утверждения о существовании на Земле жизни не менее 4,1 миллиарда лет назад. Кристаллы циркона с крохотными вкраплениями графита, в котором углерода-12 больше, чем следовало бы, указывают на то, что жизнь на Земле началась еще до появления самых первых скал. См.: Wilde S. A. et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago // Nature. 2001. 409: 175–178.

вернуться

8

См.: Javaux E. Challenges in evidencing the earliest traces of life // Nature. 2019. 572: 451–460. Полезное напоминание о проблемах, возникающих при интерпретации древнейших ископаемых.

вернуться

9

К моменту написания этой книги самые древние общепризнанные свидетельства существования жизни на Земле найдены в кремнистых сланцах в Стрелли-Пул в Австралии. Там сохранились останки не одного-двух ископаемых, но целой рифовой экосистемы, процветавшей в теплых, пронизанных солнечными лучами океанских водах около 3,43 миллиарда лет назад. См.: Allwood A. C. et al. Stromatolite reef from the Early Archaean era of Australia // Nature. 2006. 441. 714–718. Есть и другие находки, датируемые возрастом до 4 миллиардов лет и даже старше, но их статус надо уточнить.

вернуться

10

Как минимум до тех пор, пока не появятся животные, способные их скрести. Сейчас строматолиты растут только в тех редких местах, которые недоступны для животных, например в заливе Шарк в Западной Австралии, где вода настолько соленая, что расти там может только тина.

вернуться

11

Что странно, потому что тогда Солнце было не такое яркое, как сейчас. Это обстоятельство даже получило собственное название – «парадокс слабого молодого Солнца». Парадокс – потому что, казалось бы, Земля должна была покрыться льдами. Но ранняя атмосфера была богата «сильными» парниковыми газами (например, метаном), благодаря чему температура вовсе не была низкой.

вернуться

12

Горячие споры о причинах кислородной катастрофы все еще продолжаются. По имеющимся данным, в результате долгого периода повышенной активности значительное количество газов было выброшено в атмосферу из недр Земли. См.: Lyons T. W. et al. The rise of oxygen in the Earths early ocean and atmosphere // Nature. 2014, 506: 307–315; Marty B. et al. Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean // Nature. 2019. 575: 485–488; Eguchi J. et al. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon // Nature Geoscience. 2019. doi:10.1038/s41561–019–0492–6.

2
{"b":"826558","o":1}