Литмир - Электронная Библиотека

     Движение по окружности также деформирует физвакуум. Хотя численное значение скорости при таком движении может не меняться, зато постоянно меняется положение вектора скорости в пространстве. Поэтому круговое движение (в более общем случае любое движение по изогнутой кривой) деформирует вакуум и, как результат, вакуум порождает реакцию в форме центробежной силы, которая стремится выпрямить траекторию движения и сделать ее прямолинейной, чтобы исключить деформацию. Для того, чтобы преодолевать сопротивление вакуума и продолжать его деформировать, необходимо снова тратить энергию. Вследствие третьего закона механики не только вакуум действует на вращающийся предмет центробежной силой, но и предмет действует на вакуум центростремительной силой. Под действием центростремительных сил вакуум втягивается во вращающийся предмет, движется в нем от периферии к оси вращения, здесь отдельные потоки вакуума сталкиваются между собой, разворачиваются на 90 градусов (разворачиваются по той же причине, почему развернутся две столкнувшиеся водяные струи) и вылетают наружу вдоль оси вращения в разные стороны. Это и есть то, что в альтернативной науке сегодня называют торсионными полями или излучениями. А я предпочитаю называть это потоками вакуума.

     Теперь можно предложить решение многих отмеченных ранее энергетических парадоксов. Та энергия, которая выделяется в электрической лампочке, печах аэродинамического нагрева, конструкциях моста при его разрушении марширующими солдатами и многих других процессах, выделяется из физического вакуума.

     Во всех перечисленных феноменах мы имеем дело с колебаниями, даже если колебания на первый взгляд отсутствуют. Любое колебание — это всегда неравномерное движение, точнее ускоренно-замедленное. В ходе фазы ускоренного движения мы вносим в вакуум некоторую энергию. В ходе фазы замедленного движения он отдает энергию обратно и может отдать ее гораздо больше, т. к. изначально имеет огромное количество энергии. Насколько больше — зависит от величины деформации: чем больше деформация, тем больше выброс энергии из вакуума.

     Например, в печах аэродинамического нагрева воздух вначале ускоряется пропеллером и на этой стадии мы вносим в вакуум некоторую энергию. Затем воздух отбрасывается пропеллером на стенки камеры и здесь он движется, если можно так выразиться, дважды неравномерно: во-первых, падает его скорость, во-вторых, постоянно меняется вектор скорости. Как следствие, вакуум отдает очень много энергии. В данном случае колебание происходит на макроуровне и характеризуется низкой частотой и большой амплитудой, поэтому оно не воспринимается как собственно колебание.

     В случае с электрической лампочкой надо обратить внимание на тот факт, что в цепи обязательно должен присутствовать электрогенератор, без которого никакой ток по проводам не пойдет. Даже если лампочка горит от батареи, эта батарея все равно заряжалась от генератора. Когда мы сжигаем горючее вещество (уголь, нефть или газ на электростанции), тепловая энергия данного вещества преобразуется не в энергию электрического тока, а в энергию вакуума. Ротор электрогенератора при вращении создает центробежную силу, следовательно, он деформирует физвакуум и совершает над ним работу. Эта работа производится за счет тепловой энергии сгораемого вещества. Затем, когда электроны входят в электрическую лампочку, они заставляют атомы вещества нити накаливания колебаться более интенсивно, чем обычно (примерно также, как колеблются конструкции моста при марширующем шаге солдатской колонны), и в результате этого из вакуума выделяется энергия, заставляющая нить накаливания светиться. Так как и свет и физвакуум являются разновидностями материи, тогда исчезает противоречие появления одной формы материи из пустоты. В этом примере энергия электрического тока служит в качестве инструмента для высвобождения вакуумной энергии, но сама она в лампочке и других электроприборах не расходуется.

     Однако инструмент можно заменить. И однажды это сделал знаменитый физик Никола Тесла в его эксперименте передачи электрической энергии по одному проводу (а в наше время этот опыт повторил некто Авраменко). Схема установки Николы Тесла была такова: трансформатор тока первичной обмоткой подключался к источнику питания, один конец его вторичной обмотки просто болтался в воздухе, а второй конец тянулся в соседнее помещение, где к нему подсоединяли мостик из четырех диодов с лампой посередине. И при включении источника питания лампа загоралась. Но ведь в соседнее помешение тянулся всего один провод, а второго провода как такового не существовало. К тому же, как отмечалось не один раз в описаниях этого опыта, провод совершенно не нагревался. Его можно было делать из металлов самой низкой проводимости и сверхмалого диаметра, но провод всегда оставался холодным. Поэтому иногда можно услышать из уст поклонников сербского гения, будто в данном эксперименте впервые была получена сверхпроводимость при комнатной температуре. Теперь наше объяснение этому феномену.

     Трансформатор тока в данном эксперименте создавал внутри провода резко колеблющееся электрическое поле. И оно заставляло электроны диодного мостика также колебаться. А так как электроны могут идти через диоды только в одном направлении, в мостике возникал электрический ток и лампа загоралась. Энергия для свечения лампы поступала из физического вакуума, как и в случае любой электрической лампы. А по проводу никакая  энергия в соседнее помещение не поступала. По этой причине провод всегда оставался холодным: невозможно нагреть предмет, если к нему не подводить энергию. Поэтому выражение «передача энергии по одному проводу» применительно к данному эксперименту мне кажется крайне неудачным.

     Надо сказать, что если предположение об ошибочности потенциальной и кинетической энергии соответствует факту, тогда при решении задач на преобразование потенциальной энергии в кинетическую и обратно должны появляться всякие нелепости в форме нарушения закона сохранения энергии, закона сохранения импульса и т. д. Анализ показал, что это действительно так. Чаще всего такие нелепости возникают в предельных случаях (при нулевой или бесконечной массе, при нулевой или бесконечной скорости и т. д.). Поэтому если взять какую-нибудь задачу на преобразование потенциальной энергии в кинетическую и рассмотреть все ее мыслимые варианты и частные случаи, могут быть найдены нелепости в форме нарушения законов сохранения.

     Для примера рассмотрим простенькую задачку о скатывании санок с горы. Когда санки находятся на горе, они имеют потенциальную энергию E = mgh. Скатившись вниз, они будут иметь кинетическую энергию E = mv;/2. А теперь перейдем в систему отсчета, которая движется относительно горы со скоростью v и в том же направлении, куда покатятся санки. В этой новой системе отсчета находящиеся на горе санки движутся в обратном направлении со скоростью -v, следовательно они обладают кинетической энергией  E = mv;/2 (положительной энергией, а не отрицательной, т. к. скорость входит в формулу энергии в квадрате). И при этом они имеют потенциальную энергию  E = mgh, как и раньше. Значит, суммарная энергия санок на вершине горы будет  E = mgh +  mv;/2. Но когда санки оказываются внизу под горой, их энергия равна нулю. Тогда куда девается энергия санок в новой системе отсчета?

     Эту задачу я взял из школьного учебника физики. Составители учебника стараются выпутаться из нелепой ситуации следующим образом. Они заявляют, что более правильным будет решать задачу не в системе отсчета, связанной с горой или движущимися санками, а в системе отсчета общего центра масс, поскольку не только Земля притягивает к себе санки, но и санки притягивают к себе Землю и заставляют ее двигаться, пусть даже с микроскопически малой скоростью. И, мол, если в первом случае еще можно получить математически правильный результат, то во втором это оказывается уже невозможным. Если же оставаться в системе общего центра масс, тогда все проблемы исчезают. Я полностью согласен с авторами учебника физики насчет того, что более правильным подходом будет решение в системе общего центра масс. А вот со всем остальным не согласен.

8
{"b":"825825","o":1}