Но здесь аналогия кончается. Квантовая механика не была ни субъективной, ни объективной трагедией Эйнштейна. Прежде всего для Эйнштейна восстановление разорванной "связи времен", т.е. устранение ньютоновых абсолютов и лоренцова эфира не могло быть однократным актом, приводящим к тысячелетнему царству обретенной, наконец, окончательной истины. Как уже говорилось, специальная теория относительности в большей степени, чем все предшествующие физические теории, разрушила не только ньютоновы догмы, но и дух догматизма в целом. Затем Эйнштейну принадлежала идея фотонов, т.е. исток теории, приписывающей частицам волновые свойства, а волнам - корпускулярные. Наконец, Эйнштейн по существу связывал критику квантовой механики с перспективой дальнейшего развития физики, а не с попятным движением к классическим представлениям.
На этом тезисе мы уже останавливались. Эйнштейн весьма органически перешел в конце жизни от признания принципа Маха универсальным принципом природы к отрицанию его универсальности. Он говорил об ограниченности не только ньютоновой механики, но и всех теорий такого же типа, как и ньютонова. Создание новой теории, выходящей за рамки "классического идеала", не было субъективной трагедией для мыслителя, в такой большой мере приблизившего физику к этому идеалу. Когда физика пошла дальше, Эйнштейн не ощущал ее движение как крах мировой гармонии. В начале этой книги была сделана попытка очертить широкий и подвижный рационализм Эйнштейна. Этому живому, не претендующему на последнее слово, рационалистическому мировоззрению чужда трагедия оставленных позиций. Поэтому квантовая механика не была для Эйнштейна субъективной трагедией.
345
Она не была и объективной трагедией его идей, потому что объективным источником усложнения картины мира, выводящего ее за рамки "классического идеала", было последовательное и вполне органическое развитие концепций Эйнштейна.
Органическое, но совсем не идиллическое. Если у Эйнштейна не было трагедии оставленных позиций, то у него была трагедия недостигнутых позиций. Не "последних", "окончательных" и т.д., а ближайших, уже видимых, уже необходимых. Мы знаем, что поиски единой теории поля в двадцатые годы не приводили к физически однозначным и физически содержательным результатам. Вейль рассказывал, что в Принстоне в тридцатые годы Эйнштейн храбро встречал неудачи и произносил: "Ну вот, я опять сбился с пути", так же весело, как и фразы об успехах. Действительно, Эйнштейна не обескураживала каждая неудача, но он тяжело переживал неуверенность в достижении общего замысла - построения единой теории поля.
Эта неуверенность не раз высказывалась в весьма эйнштейновской, мягкой и иронической форме. В одной из первых глав этой книги упомянута надпись в принстонском институте: "Бог изощрен, но не злонамерен". Но, прощаясь в Принстоне с Вейлем, Эйнштейн сказал ему: "А может быть, он все-таки немного злонамерен?"
"Бог не злонамерен" означало для Эйнштейна не только существование мировой гармонии и не только необходимость и принципиальную достижимость единой теории поля. В этом Эйнштейн не сомневался. Но приведенное изречение означало также, что гармония бытия может быть выражена в точных геометрических соотношениях. И здесь у Эйнштейна появлялось ощущение величайшей трудности определения указанных соотношений: "А может быть, он все-таки немного злонамерен?"
Этой злонамеренности во всяком случае хватало, чтобы Эйнштейн мог сомневаться в том, что ему удастся увидеть решение проблемы Чем дальше, тем слабее становилась эта надежда и тем энергичнее работал Эйнштейн. Весной 1942 г. он писал своему другу Гансу Мюзаму (старому врачу, парализованному и лежавшему в то время в Хайфе):
346
"Я стал одиноким старым бобылем, известным главным образом тем, что обхожусь без носков. Но работаю я еще фанатичнее, чем раньше, и лелею надежду разрешить уже старую для меня проблему единого физического поля. Это напоминает воздушный корабль, на котором витаешь в небесах, но неясно представляешь себе, как опуститься на землю... Быть может, удастся дожить до лучшего времени и на мгновенье увидеть нечто вроде обетованной земли..." '
Через два года Эйнштейн вновь писал Мюзаму:
"Быть может, мне суждено еще узнать, вправе ли я верить в свои уравнения Это не более чем надежда, потому что каждый вариант связан с большими математическими трудностями. Я вам долго не писал, несмотря на муки совести и добрую волю, потому что математические мучения держат меня в безжалостных тисках и я не могу вырваться, никуда не хожу и сберегаю время, откладывая все ad colendas graecas. Как видите, я превратился в скрягу. В минуты просветления я сознаю, что эта жадность по отношению ко времени порочна и глупа" [2].
1 Helle Zeit, 50-51.
2 Ibid., 51.
В 1953 г. Эйнштейн на пресс-конференции, устроенной в связи с его 74-летием, говорил:
"Как только была завершена общая теория относительности, т.е. в 1916 г., появилась новая проблема, состоявшая в следующем. Общая теория относительности весьма естественно приводит к теории гравитационного поля, но не позволяет найти релятивистскую теорию для любого поля. С тех пор я стремился найти наиболее естественное релятивистское обобщение закона тяготения, надеясь, что обобщенный закон будет общей теорией поля. В течение последних лет мне удалось получить такое обобщение, выяснить формальную сторону проблемы, найти необходимые уравнения. Но математические трудности не позволяют получить из этих уравнений выводы, сопоставимые с наблюдением. Мало надежды, что это удастся до конца моих дней".
Эту характеристику своих результатов Эйнштейн повторял неоднократно вплоть до последнего дня жизни, когда он уже знал о близости смерти и был уверен, что теория останется незавершенной, ее математическая корректность не гарантирует физической однозначности.
347
Но Эйнштейн понимал, что дело не только в последующей математической разработке физической теории, в последующем преодолении математических трудностей и получении численных решений уравнений поля. Для Эйнштейна теория но имеет права называться физической, если она по включает физической идеи, допускающей сопоставление с наблюдениями.
Подобная идея была тесно связана с тем или иным отношением к теории микромира. Эйнштейн думал, что единая теория поля позволит вывести квантово-статистические закономерности микромира из нестатистических (управляющих не вероятностями, а самими фактами), более глубоких и общих закономерностей бытия. Тем самым были бы устранены и некоторые позитивистские тенденции в физике.
"Я работаю, - писал Эйнштейн Соловину в 1938 г., - со своими молодыми людьми над чрезвычайно интересной теорией, которая, надеюсь, поможет преодолеть современную мистику вероятности и отход от понятия реальности в физике..." [3]
В письме к Соловину через двенадцать лет Эйнштейн признает, что единая теория поля еще не может быть проверена, так как математические трудности не позволяют придать ей вид, допускающий однозначную оценку. Общие, философские и логические аргументы не убеждают физиков.
"Единая теория поля теперь уже закончена... Несмотря на весь затраченный труд, я не могу ее проверить каким-либо способом. Такое положение сохранится на долгие годы, тем более что физики не воспринимают логических и философских аргументов" [4].
3 Lettres a Solovine, 75.
4 Ibid., 107.
Неужели беспримерное напряжение всех сил гениального мыслителя, продолжавшееся почти тридцать лет, было бесплодным?
Попытке ответа на этот вопрос должно предшествовать изложение другой линии развития физики в тридцатые - пятидесятые годы.
348
Квантовая механика, созданная в 1924-1926 гг., была нерелятивистской теорией. В ней не учитывались процессы, предсказанные теорией относительности, например изменение массы электрона в зависимости от его скорости. В 1929 г. Дирак написал релятивистское волновое уравнение, которому подчинено движение электрона. В нем учитывались такие релятивистские поправки, как изменение массы электрона. Уравнение Дирака точнее описывало движение электрона, обладающего большой энергией, движущегося с очень большой скоростью. Но при этом у Дирака в его расчетах появились отрицательные значения энергии электрона. Этот физически неприемлемый вывод заставил Дирака предположить, что найденное им релятивистское волновое уравнение описывает не только поведение электрона, но и поведение другой частицы, которая отличается от электрона только зарядом - она имеет не отрицательный, как электрон, а положительный электрический заряд. Такая частица была экспериментально найдена и получила название позитрона.