Литмир - Электронная Библиотека
* * *

«Время – вот материал, из которого я сделан», – заметил аргентинский писатель Хорхе Луис Борхес[30]. В этой фразе скрыто глубокое прозрение. Как доказали последние исследования, время буквально пронизывает плоть всех живых существ, и по одной веской причине: мы живем на вращающейся планете.

Чтобы лучше понять это, нужно вернуться на миллиарды лет назад, к зарождению жизни, к одноклеточным организмам, населявшим теплое первобытное море[31]. Яркий полуденный свет чередовался с темной прохладой ночей – день за днем, с четкой предсказуемой периодичностью, и так триллионы дней. Свет и тьма, тепло и холод – в этой ежедневной матрице развивалась жизнь. В отсутствие озонового атмосферного слоя губительная для жизни солнечная радиация сжигала поверхность Земли в светлое время суток. Чтобы избежать воздействия вредоносных лучей, наиболее тонкие биохимические процессы должны были совершаться в безопасной темноте ночи, и в результате вырабатывался определенный ритм обмена веществ. У некоторых организмов появились сенсоры, реагирующие на свет, – сначала просто светочувствительные клетки, а затем более сложно устроенные глаза, которые позволяли различать самые незначительные изменения освещенности во время заката и рассвета.

Дальше дело было за эволюцией. У некоторых биологических видов развились гены, клетки и системы жизнеобеспечения, ответственные за выработку собственных внутренних биоритмов, прекрасно сочетающихся с планетарными циклами, – циркадианных (циркадных, околосуточных) ритмов (от лат. circa – около и dies – день). Световые сенсоры соединяются с циркадианными часами, чтобы синхронизировать внутренний биоритм организма с астрономическими сутками. «Таким образом, – говорит биолог Томас Вер, – циркадианный метроном создает для организма день и ночь, отражающие „режим“ внешнего мира»[32].

Эти метрономы настолько чувствительны к свету, что даже низкая освещенность приводит к изменению ритма[33]. Солнечный свет – основной экзогенный (внешний) фактор, управляющий биологическими часами; он настраивает их ритм таким образом, чтобы тот согласовывался с изменяющейся продолжительностью светового дня и ночи, так что летом биологический день длинный, а зимой – короткий. Когда вы утром раздергиваете шторы, специальные светочувствительные клетки сетчатки глаз измеряют уровень света и посылают в мозг сигнал о наступлении рассвета, тем самым синхронизируя циркадианные часы с космическими ритмами[34].

Ритмы внутреннего метронома настолько сильные и надежные, что они вырабатываются постоянно – даже при отсутствии внешних сигналов. Ученые обнаружили это в ходе наблюдения за организмами, на недели изолированными от природных воздействий. При отсутствии сигналов о наступлении дня или ночи организм переходил от астрономического цикла к 24-часовому циклу сна и бодрствования и ритмов других органов тела. (Эта «устойчивая» модель функционирования организма называется автономным ритмом и записана в геноме биологического вида.)

Такая система обладает двумя большими преимуществами: в организме в нужное время происходят нужные процессы, но при всем том он готов к ежедневной смене ритма и подстраивается под изменения во внешней среде. Неся в себе эту модель космоса, организм всегда на шаг опережает происходящие вокруг него изменения, подготавливаясь к разным событиям дня и ночи: приему пищи, спариванию, борьбе с хищниками и изменению температуры окружающей среды.

* * *

Слово «часы» недостаточно полно передает влияние циркадианного цикла на организм. Хотя внешние воздействия достаточно сильны, чтобы поддерживать постоянные условия функционирования организма, циркадианные импульсы обусловливают разительные колебания в течение 24-часового цикла. Как писал Эмерсон, «все кажется неизменным, пока вы не раскрыли его секрет»[35].

Возьмем температуру тела.

Допустим, вы принимаете душ. Чтобы проснуться и обрести бодрость, некоторые рекомендуют сделать душ контрастным, чередуя горячую воду с холодной. (Он может сослужить вам сомнительную службу: невольно вскрикнув под ледяными струями, вы перебудите домашних.) Тепловые рецепторы, находящиеся прямо под кожей, выдерживают температуру до 45 °C, холодовые рецепторы – до 10 °C. При более низкой или более высокой температуре включаются болевые рецепторы. Однако даже если вы пустите очень горячую или очень холодную воду, базовая температура тела изменится весьма незначительно. (Кстати, представление о том, что температура тела в норме составляет 37 °C[36], ошибочно[37]. Тщательное исследование, основанное на миллионах измерений, показало, что у женщин средняя температура тела равна 36,89 °C, а у мужчин – 36,72 °C.) Человеческий организм обладает настолько совершенным механизмом поддержания температуры тела вне зависимости от изменений во внешней среде, что у чемпионки по плаванию в холодной воде Линн Кокс температура тела остается неизменной даже в ледяных водах Антарктики, а марафонский бегун может не перегреться и при пятидесятиградусной жаре в Долине Смерти, межгорной впадине в пустыне Мохаве.

Способность человеческого организма поддерживать постоянную температуру и другие внутренние показатели – она называется «гомеостаз» (от греч. homoios – подобный и stasis – стояние) – можно принимать как должное, но это удивительный феномен[38]. Организм сохраняет свою внутреннюю среду неизменной, постоянно отслеживая все показатели: содержание глюкозы, углекислоты, гормонов в крови, температуру тела и даже рН (кислотность) спинномозговой жидкости. Они колеблются вокруг определенного заданного значения, или нормы. Сложная система нейрогуморальной регуляции улавливает любое отклонение от нормы и возвращает показатели на нужный уровень, приводя в действие механизмы коррекции[39].

Однако недавно мы узнали, что нормы на самом деле заданы не так уж жестко и меняются в течение дня, подчиняясь цикличности циркадианного ритма и обнаруживая существенную зависимость от того, что мы делаем и как себя чувствуем. Температура тела, например, может изменяться от 36,11°C ранним утром (37 °C утром – первый признак начинающейся лихорадки) до 37,22–37,78 °C ближе к вечеру. Эти колебания затрагивают все стороны жизнедеятельности организма. Так, с повышением температуры возрастает болевой порог, равно как и упругость мышц, скорость реагирования, зрительно-моторная координация.

Частота сердечных сокращений и артериальное давление тоже меняются в течение суток, как и количество лейкоцитов в крови, содержание гормонов и нейромедиаторов, скорость кровотока в мозге. Частота сердечных сокращений и давление в течение дня медленно повышаются, уровень гормона стресса кортизола падает. С наступлением ночи выработка «гормона темноты» мелатонина усиливается, температура тела, пульс и кровяное давление падают, а концентрация кортизола увеличивается, достигая пика к раннему утру.

Эти циркадианные колебания едва ли можно считать несущественными. Если терапевты не будут принимать их во внимание, результаты измерения жизненно важных показателей – от артериального давления и пульса до количества сперматозоидов в семенной жидкости и аллергических реакций – окажутся сильно искаженными. (Некоторые ученые даже настаивают на необходимости фиксации времени каждого клинического обследования[40].) Простые смертные вроде нас с вами могут использовать эти знания о своем теле себе во благо[41]. Если вы не хотите, чтобы порезы сильно кровоточили, бриться лучше в 8 часов утра, когда в крови больше всего отвечающих за ее свертываемость и вязкость тромбоцитов (потому-то сердечные приступы чаще случаются утром). Чтобы не извиваться от боли в кресле дантиста, назначьте визит на послеобеденное время, когда болевой порог самый высокий. Свою бутылку пива или бокал вина выпивайте между 5 и 6 часами вечера: в это время печень наиболее активно выводит из организма токсины, так что ущерб от алкоголя будет минимальным. А для установления спортивных рекордов более всего подходит ранний вечер[42].

вернуться

30

Jorge Luis Borges, “A New Refutation of Time”, Labyrinths (New York: Modern Library, 1983), 234.

вернуться

31

Ezio Rosato and Charlambos P. Kyriacou, “Origins of circadian rhythmicity”, Journal of Biological Rhythms 17:6, 506–511 (2002); Russell Foster and Leon Kreitzman, Rhythms of Life (London: Profile Books, 2004), 157.

вернуться

32

T. A. Wehr, “A ‘clock for all seasons’ in the human brain”, in R. M. Bujis et al., eds., Progress in Brain Research 111 (1996).

вернуться

33

Foster and Kreitzman, Rhythms of Life, 11.

вернуться

34

M. S. Freedman et al., “Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors”, Science 284, 502–504 (1999); D. M. Berson et al., “Phototransduction by retinal ganglion cells that set the circadian clock”, Science 295, 1070–1073 (2002); I. Provencio “Photoreceptive net in the mammalian retina”, Nature 415, 493 (2002); S. Hattar et al., “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensivity”, Science 295, 1065–1068 (2002); I. Provencio et al., “A novel human opsin in the inner retina”, Journal of Neuroscience 20, 600–605 (2000); R. G. Foster, “Bright blue times”, Nature 433, 698–699 (2005); Z. Melyan et al., “Addition of human melanopsin renders mammalian cells photoresponsive”, Nature 433, 741–745 (2005); D. M. Dacey et al., “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN”, Nature 433, 749–751 (2005).

вернуться

35

Ralph Waldo Emerson, “Circles”, in Essays and Poems (London: Everyman Paperback Classics, 1992), 147.

вернуться

36

Имеется в виду температура тела, измеренная во рту. – Ред.

вернуться

37

P. A. Mackowiak et al., “A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich”, Journal of the American Medical Association 268, 1578–1580 (1992).

вернуться

38

Foster and Kreitzman, Rhythms of Life, 53–54.

вернуться

39

Сайт Лаборатории Катрин Ривьер http://www.salk.edu/LABS/pbl-cr/02_Research.html, retrieved March 11, 2006.

вернуться

40

Wehr, “A ‘clock for all seasons’ in the human brain”; T. Reilly et al., Biological Rhythms and Exercise (New York: Oxford University Press, 1997), 50; Y. Watanabe et al., “Thousands of blood pressure and heart rate measurements at fixed clock hours may mislead”, Neuroendocrinology Letters 24:5, 339–340 (2003); D. A. Conroy et al., “Daily rhythm of cerebral blood flow velocity”, Journal of Circadian Rhythms 3:3, DOI: 10.1186/1740-3391-3-3 (2005); W. J. M. Hrushesky, “Timing is everything”, The Sciences, July/August 1994, 32–37; John Palmer, The Living Clock (New York: Oxford University Press, 2002); Foster and Kreitzman, Rhythms of Life, 10–21.

вернуться

41

Foster and Kreitzman, Rhythms of Life, 71.

вернуться

42

Foster and Kreitzman, Rhythms of Life, 11; Smolensky and Lamberg, The Body Clock Guide to Better Health, 5–12; Hrushesky, “Timing is everything”.

4
{"b":"821389","o":1}