Литмир - Электронная Библиотека
A
A

1.4.1. Конструктивные структурные схемы ВРШ с МИШ в ступице винта (BERG Propulsion и ВРШ фирмы КаМеWа)

Ступица гребного винта состоит из двух основных частей: гидроцилиндра 1 (рис. 1.24) и корпуса втулки 3. Блок гребного винта крепится к кованому фланцу 2 болтами из нержавеющей стали на заднем конце вала гребного винта.

В гидроцилиндре находится поршень 4, который установлен на заднем конце штока поршня 5. Полый поршневой шток содержит масляную трубку, которая позволяет маслу под давлением течь либо вокруг трубки, либо через нее.

Эксплуатация современных судовых дизельных установок - i_054.jpg

Рис. 1.24. Ступица винта [66]

Масло, протекающее по трубе 1, подается в камеру на задней стороне поршня, а масло, протекающее по трубе 2, направляется в камеру на передней стороне поршня (рис. 1.25). Движение поршня и штока передается механизму в корпусе ступицы. Подвижные части корпуса втулки состоят из обработанного четырехгранного стального ведущего блока 3, четырех меньших скользящих направляющих блоков из бронзы 4 и четырех вращающихся фланцев 5 (корни лопаток).

Ведущий блок установлен на переднем конце штока поршня и закреплен натяжной гайкой 6. Лопасти гребного винта крепятся приваренными болтами из нержавеющей стали 7. Попадание соленой воды в основание лопасти предотвращается резиновым уплотнительным кольцом между лопастью и корпусом втулки.

Эксплуатация современных судовых дизельных установок - i_055.jpg

Рис. 1.25. Детали ступицы, обеспечивающие поворот лопастей [66].

В зависимости от назначения и типа судна существует большое количество конструктивных исполнений ВРШ. Механизм изменения шага (МИШ) может располагаться как на валопроводе, так и в ступице гребного винта, причем в ступице гребного винта могут располагаться 2 гидроцилиндра. Значительно более подробно различные конструкции и работа ВРШ изложены в [10].

ВРШ отличаются высокой надежностью и не претерпели принципиальных конструктивных изменений, поэтому для детального представления о конструкции ВРШ с МОД рассмотрим структурную схему ВРШ пневмогидравлического типа фирмы «КаМеWа» (рис. 1.26).

Шаг винта и частота вращения ГД задаются единой рукояткой управления 6, реже двумя рукоятками (в системах управления устаревших ВРШ). Пневмозадатчики 8 и 38 передают пневмосигналы управления шагом ВРШ и частотой ГД (рис. 1.26).

Телемотор-приемник 25, по сути дела пневмогидравлический золотник, в зависимости от величины давления пневмосигнала управляющего воздуха направляет силовое масло в вспомогательный сервомотор 12, который называют также гидроусилителем. Он перемещает управляющую штангу 35 золотника 34 (рис. 1.26). Золотники направляют масло в ту или иную полость сервомотора МИШ.

МИШ разворачивает лопасти гребного винта при перемещении поршня сервомотора. Положение поршня сервомотора 32 и соответственно лопастей винта фиксируется обратной связью.

ВРШ имеет механизм поворота лопастей кривошипно-кулисного типа с гидравлическим приводом, расположенном в ступице и масловвод, расположенный в линии валопровода.

Эксплуатация современных судовых дизельных установок - i_056.jpg

Рис. 1.26. Конструктивная структурно-функциональная схема ВРШ фирмы «КаМеWа»:

1- винт с поворотными лопастями; 2 – гребной вал; 3 – клапан, регулирующий давление в сливной магистрали; 4 – масловод; 5 – редукционный клапан нагнетающей магистрали; 6 – рукоятка главного поста управления; 7 – программный кулачок изменения шага винта; 8 – телемотор-задатчик винта; 9 – манометры; 10 – пусковой воздушный баллон ГД; 11 – редукционный клапан; 12 – вспомогательный сервомотор; 13 – телемотор-приемник шага винта; 14 – нерегулируемый дроссель; 15 – золотник; 16 – невозвратные клапана; 17 – насос удержания; 18 – насос перекладки; 19 – основной маслобак; 20 – разгрузочный клапан; 21 – поршень золотника; 22 – поршень вспомогательного сервомотора; 23 – рычаг обратной связи; 24 – насос поддержания высокого уровня масла в напорном баке; 25 – регулировочный штифт; 26 – напорный масляный бак; 27 – пружина; 28 – поршень; 29 – пальцевая шайба; 30 – уплотнительная манжета; 31 – предохранительный клапан; 32 – стакан; 33 – пружины; 34 – золотник маслораспределительный; 35 – управляющая штанга; 36 – масляный трубопровод; 37 – программный кулачок изменения частоты вращения ГД; 38 – задатчик частоты вращения.

Гребной винт имеет три поворотных лопасти. Внутри ступицы расположен поршень сервомотора, 28, передающий усилие на поворот лопастей. Уплотнительная манжета двойного действия выполнена из спецрезины, вулканизированной на металлическое кольцо. Она предотвращает как утечку масла из ступицы, так и попадание воды в ступицу.

Во фланце гребного вала 2 установлен предохранительный вентиль 31, при помощи которого производится стравливание масла из ступицы при повышении давления вследствие температурного расширения или просачивания масла из гидроцилиндра.

Поршень 28 гидравлического цилиндра имеет металлическое уплотнительное кольцо, расположенное в канавке поршня. В кормовой части цилиндра на стакане 32 расположены две мощные пружины 33, которые устанавливают лопасти в положение полного переднего хода в случае падения давления масла в гидросистеме и удерживают поршень в этом положении. Это позволяет судну сохранить передний ход в случае выхода из строя гидропривода. При сборке винта пружины предварительно зажимают между поршнем и стаканом.

Поршень соединен с ползуном, имеющим трехгранную форму и служащим для преобразования возвратно-поступательного движения поршня в поворотное движение лопастей. Внутренняя полость ступицы полностью заполнена маслом. Т

Внутри штока поршня расположен маслораспределительный золотник 34, при перемещении которого масло перепускается в одну или другую полость гидравлического цилиндра по соответствующим каналам. Золотник 34 при помощи шарнирного соединения соединен с управляющей штангой 35, проходящей внутри полого гребного вала 2. Шарнирное соединение служит для предотвращения заклинивания золотника в гильзе, к которой он притерт, в случае появления перекосов из-за деформации гребного вала.

По управляющей штанге масло под давлением подводится к маслораспределительному золотнику. Если передвинуть маслораспределительный золотник (при помощи управляющей штанги 35), то откроется подача масла в гидроцилиндр и вместе с золотником начнёт перемещаться поршень. После того, как золотник остановится в заданном положении, поршень, продолжая движение под давлением масла, поступающего через золотник, перекроет соответствующие отверстия и также остановится в заданном положении.

Эксплуатация современных судовых дизельных установок - i_057.jpg

Рис 1.27. Телемотор-приемник «КаМеВа»: А – к вспомогательному сервомотору; Б – входное отверстие для масла под давлением; В – от телемотора-датчика шага; Г – к скользящей муфте масловвода; Д – утечное масло; Е – слив;1 – большой поршень золотника; 2 – пружина; 3 – малый поршень золотника; 4 – канал; 5 – корпус; 6 – кольцевая выточка; 7 – кольцевая выточка; 8 – фильтр; 9 – дроссельное отверстие; 10 – поршень; 11 – штырь; 12 – регулировочный штифт;13 – пружина; 14 – диафрагма; 15 – крышка телемотора-приемника;16 – отверстие подвода управляющего воздуха; 17 – отверстие; 18 – корпус телемотора-приемника; 19 – кольцевая выточка; 20 – кольцевая выточка.

При движении золотника в нос, масло под давлением будет проходить через отверстие в золотнике в кормовую часть гидравлического цилиндра и будет двигать поршень в нос до тех пор, пока пояски золотника не окажутся в нейтральном положении. При движении золотника в корму, поршень также двигается в корму.

13
{"b":"819779","o":1}