Проследим за движением одного из атомов, составляющих электронную лавину.
Электрические силы неумолимо влекут его к аноду разрядной трубки. Скорость электрона непрерывно возрастает. Но вот на пути электрона оказывается преграда — атом газа. Электрон ударяется в эту громаду, имеющую вес в тысячи раз больший, чем вес электрона. Если скорость электрона мала, то соударение его с атомом ни к чему не приводит. Электрон, словно шарик от стенки, отскакивает от атома, потеряв всего лишь сотую долю процента своей кинетической энергии. Но если электрон движется достаточно быстро, он может внести «беспорядок» в планетной системе атома. Атом оказывается возбужденным и излучает квант света.
Атомы каждого элемента имеют строго определенное число орбит, на которые могут переходить электроны при возбуждении. Соседи-атомы в газе находятся далеко и своими электрическими и магнитными полями не влияют на «поединок» электрона с данным атомом. Поэтому-то атомы плазмы как правило «стреляют» вполне определенными фотонами, свойственными данному газу, и окрашивают плазму во вполне определенный цвет.
Примерно так же происходит возбуждение семейств атомов — молекул газа. В трубке, наполненной не отдельными атомами, а молекулами, электроны даже более успешно возбуждают их, заставляя излучать фотоны.
Кванты световой энергии, «выстреливаемые» атомами, не сразу попадают в наш глаз. Они бесчисленное число раз передаются от одного атома к другому, описывая причудливый зигзагообразный путь, пока не покинут газ, пройдя через стекло разрядной трубки. Значит, кванты света — фотоны — сами способны возбуждать атомы, на которые они наталкиваются.
Может возникнуть вопрос: а не рождают ли свет и положительные частицы — ионы, которые движутся к катоду навстречу электронам? Ведь они тоже ударяются о молекулы газа.
Ответить на этот вопрос нетрудно, если вспомнить, что ионы во много раз тяжелее электронов и скорость их движения значительно меньше скорости легких и подвижных электронов. Благодаря этому шансы на возбуждение ионами газа значительно меньше, хотя оно и имеет место.
Чтобы иметь более полное представление о «кухне» свечения плазмы, нужно рассказать еще об одной причине появления фотонов внутри нее.
Плазма — это хаос заряженных и нейтральных частиц газа. В ней непрерывно происходит смена ролей: миллиарды ионизированных атомов становятся нейтральными, их ряды пополняют новые миллиарды атомов, подвергшихся ионизации.
Превращение положительного иона плюс электрон в нейтральный атом — это переход к более устойчивому состоянию. В микромире всякий такой переход сопровождается выделением энергии.
В виде чего выделяется энергия при нейтрализации зарядов в плазме? В виде фотонов, порций света. Этот свет вливается в общий «хор» световых сигналов, рожденных в недрах плазмы.
Вы послали фототелеграмму…
Однажды со мной был такой случай. Ночью пронзительно зазвонил телефон.
— Будете говорить с Хабаровском, — услышал я усталый голос телефонистки.
Телефонные провода донесли до меня голос старого товарища, ставшего инженером в один день со мной.
Ночной разговор был короток. Из него я уяснил, что в лаборатории, где работал мой товарищ, не ладятся дела с одним важным электронным прибором, до сдачи которого остались считанные дни.
— Высылай характеристики полупроводниковых триодов, — попросил меня товарищ и продиктовал список триодов, которые интересовали его лабораторию.
Я знал, что значит электронная схема, которая не хочет работать, как положено. Я знал, что такое считанные дни, которыми располагают конструкторы. И ночной телефонный звонок — это, видимо, была последняя ставка небольшой группы людей в далеком Хабаровске, которые во что бы то ни стало хотели закончить работу в срок.
Утром я пришел на московский телеграф.
— Примите фототелеграмму… очень важно, — сказал я девушке и выложил несколько листков, экономно исписанных цифрами, буквами и разрисованных разными кривыми.
С телеграфа я ушел успокоенный. Я знал, что дня не пройдет, и мой товарищ будет иметь все необходимое для работы.
Фототелеграф — замечательное достижение техники, позволившее тысячам людей передавать из одного города в другой письма, чертежи, рисунки, фотографии.
Причем же тут плазма? — спросит читатель.
А вот причем: если бы не существовала плазма, то фототелеграфа в том виде, в каком он находится сейчас, не было бы. Посмотрим же, какую роль играет плазма при обмене фототелеграммами.
Разные предметы по-разному отражают свет. Направьте луч карманного фонаря на консервную банку. Она заблестит. Перенесите теперь луч на черную поверхность вашего зимнего пальто: света отразится гораздо меньше.
На передающей станции острый луч света упирается в круглый барабан. На барабане закреплена поданная вами телеграмма. Так как барабан вращается и постепенно ползет вдоль своей оси, то луч света «обшарит» все закоулки телеграммы. Рядом стоит фотоэлемент, он ловит отраженный свет и превращает его в ток. Светлые участки фототелеграммы пошлют в окошко фотоэлемента много света, темные — значительно меньше. В зависимости от этого и ток в цепи фотоэлемента будет то большим, то маленьким.
Электрические сигналы фотоэлемента, усиленные до нужной величины, мчатся по проводам и попадают на приемную станцию. Здесь тоже есть вращающийся барабан. Он в точности повторяет все движения своего «собеседника» — барабана, находящегося в тысячах километров от него. Барабан этот обернут чувствительной фотобумагой.
Какой же художник будет «рисовать» на этой фотобумаге те замысловатые кривые и колонки цифр, которые вы сдали в окошко девушке-приемщице?
Плазма. Она заключена в небольшой стеклянный баллончик и излучает тонкий луч света. Баллончик с плазмой называется газосветной лампой В ней между электродами то ярче, то слабее горит тлеющий разряд.
Вы, очевидно, помните его «портрет». Все части тлеющего разряда возникают только в трубке достаточно длинной, когда расстояние между анодом и катодом велико.
Если каким-либо образом сближать анод и катод в трубке, в которой живет тлеющий разряд, то получится довольно интересная картина: катодные части разряда останутся неизменными, а положительный столб будет становиться все короче.
В газосветной лампе, используемой в фототелеграфии, положительного столба нет, так как катод и анод находятся близко друг от друга. В ней свет рождается благодаря отрицательному тлеющему свечению.
Плазма возникает в смеси газов аргона, неона и небольшого количества паров ртути. Именно такой состав «начинки» лампы обеспечивает наилучшее воздействие ее света на фотобумагу.
На рисунке изображено устройство газосветной лампы. В ней катод выполнен в виде пустого цилиндрика, а анод — в виде круглой лепешки с маленьким отверстием в центре. Через него острый, как игла, световой луч вырывается наружу и попадает на фотобумагу.
Катодное свечение тлеющего разряда чутко реагирует на силу тока, протекающего через плазму.
Увеличился ток — свечение мгновенно становится ярче и световой луч сильнее засвечивает фотобумагу, уменьшился ток — все происходит наоборот.
Когда на приемной станции фототелеграфа световой луч закончит свой путь по фотобумаге, начинается обычная работа, известная любому из нас. Лист бумаги погружают в проявитель, потом в закрепитель, тщательно промывают, сушат, и фотодепешу можно нести адресату.
Получая плотный, аккуратно обрезанный листок фототелеграммы, не каждый из нас знает, что над ним старательно трудилась и плазма.
Буквы, написанные огнем