Литмир - Электронная Библиотека

Естественно, диалог начинается с пользователя, которому что-то нужно от чат-бота, и он начинает разговор, чтобы сказать, что ему нужно.

Чат-бот должен сопоставить это с намерением, запрограммированным для обработки запроса.

Например, когда пользователь заказывает пиццу, распознается подходящее намерение для заказа пиццы.

И это намерение подразумевает наличие нескольких компонентов.

Что на самом деле говорит пользователь, какое действие предпринять, ответ чат-бота и понимание контекста.

И это намерение запускает действие по размещению заказа.

Это может быть похоже на функциональность сервера, который обрабатывает заказ.

Затем чат-бот может дать соответствующий ответ, например, подтверждение того, что заказ пользователя был размещен.

И чат-бот также должен иметь возможность обрабатывать ветвление диалога, которое не всегда следует именно этому потоку.

Например, что, если пользователь, заказавший пиццу, сделает дополнительный запрос на заказ?

Чат-бот должен поддерживать естественный разговор, который учится на прошлых диалогах.

Он может вернуться к тому же самому намерению и добавить дополнительный уровень контекста или осведомленности, чтобы понять, что слово «оба» в запросе пользователя относится к двум пиццам, которые он заказывает.

Ваш чат-бот может скорректировать заказ и удовлетворить дополнительный запрос пользователя.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_9.png

Как правило, рабочий процесс создания чат-бота состоит из трех этапов.

На этапе дизайна вы определяете индивидуальность вашего чат-бота.

Будет ли он упреждающим, например, делать предложения пользователям, или реагировать, просто отвечая на запросы пользователей.

Определите атрибуты, которые вы хотите добавить в диалог, стиль письма и индивидуальность диалога.

Подумайте о том, как ваш чат-бот будет приветствовать пользователя и как завершит разговор.

Как разговор должен проходить для нового пользователя по сравнению с вернувшимся пользователем.

На этапе разработки вы используете поток диалога для создания своего чат-бота с комбинацией прямого добавления намерений и ответов в консоли и написания кода для подключения к внутренним службам.

Этап развертывания в основном зависит от того, какие компоненты нужны вашему чат-боту, и каких приложений он будет касаться.

Здесь подумайте о безопасности, интеграции и масштабировании.

И здесь нужно определить, для каких платформ нужен ваш чат-бот.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_10.png

Работа чат-бота всегда начинается с намерений.

Намерения – это соединительные линии дерева диалога.

Они соединяют все ветви.

Намерения определяют, в какую сторону пойдет разговор и что должен делать чат-бот.

В общении намерения можно рассматривать как корневые глаголы в диалоге, например, хочу кофе транслируется в приобретение напитка.

Иногда намерения не являются явными и выводятся из всей фразы.

И нужно сопоставить намерения с какими-то действиями.

Если у вас приложение службы поддержки, тогда намерения могут инициировать открытие заявки, обновление заявки, закрытие заявки на поддержку.

Также вашему приложению может потребоваться получить доступ и обновить информацию об учетной записи пользователя, обратиться к специалисту и провести опрос по обеспечению качества.

Даже утверждение, да или нет, может являться намерением.

И намерения развиваются по мере того, как развивается ваше понимание потребностей пользователей.

Чтобы упростить задачу определения намерений, можно применить некоторые практические правила.

Сначала определите глаголы в диалоге.

Это позволит вашему чат-боту сопоставить свои действия с потребностями пользователя.

Также нужно определить, где диалог должен ветвиться согласно логике.

После того, как вы определили намерения, вам нужно обучить своего чат-бота распознавать их.

Это можно сделать с использованием обучающих фраз.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_11.png

Обучающие фразы для каждого намерения должны отражать то, как пользователи проявляют такое намерение.

Всегда полезно добавлять варианты грамматической конструкции запроса, используя пассивные и активные глаголы, вопросы и т. д.

При создании намерения, чем больше учебных фраз вы можете придумать, тем лучше.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_12.png

Откроем консоль Dialogflow.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_13.png

И создадим агента – чат-бот с помощью кнопки Create agent.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_14.png

Введем имя агента и нажмем кнопку Create.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_15.png

И теперь, здесь мы можем добавлять намерения.

Нажмем кнопку Create Intent.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_16.png

Введем имя намерения order.pizza.

И теперь, ниже мы можем добавлять фразы для обучения этому намерению, используя кнопку ADD TRAINING PHRASES.

После ввода не забудьте нажимать кнопку Save сохранения.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_17.png

Теперь, когда мы ввели фразы для обучения, мы можем протестировать агента.

И чтобы проверить, правильно ли было обучено намерение, мы можем использовать правую боковую панель со строкой «Попробуй сейчас» Try it now.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_18.png

Здесь мы можем ввести фразу и посмотреть, сможет ли агент определить намерение.

В строке Try it now введем «Могу ли я забрать сырную пиццу за два часа?».

И здесь мы видим, что намерение определено верно – order.pizza.

И обратите внимание, что ответ по умолчанию недоступен, потому что мы не определили никаких ответов, которые агент должен был предоставить после того, как он определил намерение.

Также обратите внимание, что хотя введенная фраза не является частью обучающих фраз, агент верно определил намерение, потому что Dialogflow использует ИИ.

Агент в состоянии определить правильное намерение, потому что он определяет семантическое сходство между обучающими фразами и вводом пользователя.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_19.png

Теперь, когда вы вернетесь на страницу намерений, вы увидите, что кроме намерения, которое мы только что создали, здесь уже есть два намерения, и они оба являются намерениями по умолчанию.

Откроем намерение Welcome.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_20.png

Это намерение приветствия по умолчанию.

И это намерение позволяет агенту распознавать приветствия от пользователя.

Поэтому, когда пользователь говорит «Привет», «Привет», «Как дела?», агент сможет ответить приветствием и спросить, как он может помочь пользователю.

Нам не нужно определять это намерение.

Эти намерения по умолчанию создаются автоматически вместе с агентом.

Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa - img_21.png

Fallback намерение, как следует из названия, является запасным вариантом для агента, который не понимает, о чем просит пользователь.

Вы можете попробовать задать вопрос о погоде агенту заказа пиццы и посмотреть, что произойдет.

Вот несколько рекомендаций, которые следует соблюдать при определении намерений чат-бота.

При выборе обучающих фраз для тренировки намерения обязательно учитывайте, каким образом пользователи могут выразить это намерение.

Это может варьироваться от синонимов до различных грамматических конструкций фраз.

Другим важным аспектом является определение намерений не двусмысленным.

2
{"b":"800139","o":1}