Литмир - Электронная Библиотека

Если Вселенная развивается случайным образом, то должны меняться во времени и фундаментальные константы. Учёные решили получить ответ на данный вопрос путём прямого измерения фундаментальных постоянных в различных областях Вселенной. Для измерения была выбрана одна из физических постоянных – постоянная тонкой структуры α или постоянная Зоммерфельда. Данная константа является скалярной величиной, получена опытным путём и равная примерно 1/137. Она характеризует силу электромагнитного взаимодействия и определяет все основные свойства и характеристики объектов микромира: размеры электронных орбит в атомах, энергию связи между элементарными частицами и атомами, следовательно, все физические и химические свойства вещества.

Безразмерная α образована из комбинации других фундаментальных констант: элементарного электрического заряда е, приведённой постоянной планка ћ, скорости света в вакууме с и диэлектрической проницаемости свободного пространства ε0. Она также может быть образована и в терминах других фундаментальных физических констант. Её численное значение не зависит от выбранной системы единиц, поэтому она хорошо подходит для ответа на поставленный вопрос.

Большинство экспериментальных данных подтверждают неизменность постоянной α. Исследования, проведённые в 2016 году учёными из Института астрономии при Кембриджском университете и из Центра астрофизики и суперкомпьютерных вычислений в Технологическом университете Суинберна в Австралии показали, что постоянная тонкой структуры в галактике за последние 8,5 миллиарда лет не изменилась[14].

Астрофизики из семи стран под руководством Майкла Вильчинского из Университета Нового Южного Уэльса в Австралии установили, что физическая константа α за последние 13 миллиардов лет – а это соответствует возрасту Вселенной 800 миллионов лет – сохранила своё значение с точностью до пятого знака после запятой. Однако, когда учёные рассмотрели полученные результаты совместно с другими измерениями константы, они заметили пространственные вариации постоянной на уровне статистической значимости[15]. Это указывает на то, что расхождение между современными и прошлыми значениями постоянной тонкой структуры зависит не от количества прошедшего времени, а от пространственного положения тех точек, где были сделаны замеры.

Неизменность константы подтверждает Стандартную модель. Однако существуют теории, в отличие от Стандартной, допускающие изменение фундаментальных констант во времени. Но для нас важно другое. Известно, будь α всего на 4 % больше, производство углерода внутри звёзд стало бы невозможным, следовательно, и зарождение жизни также было бы невозможным.

Можно сделать однозначный вывод: если константа стабильна, наша Вселенная изначально была запрограммирована на возникновение жизни. Если же она изменяется – однородности и изотропности Вселенной нет, и человечество возникло в тот момент, когда возможно его существование. И нам отведён небольшой отрезок жизни во времени и крохотная часть пространства Вселенной с наблюдаемыми в настоящее время параметрами. Длительные наблюдения за космосом подтверждают единственность существования человеческой цивилизации.

В первые моменты существования горячей и плотной Вселенной количество частиц и античастиц было одинаковым. Из этого следует, что Вселенная вообще не должна существовать, – аннигиляция частиц и античастиц привела бы к тому, что Вселенная состояла только из излучения. Но, как известно, Вселенная почти полностью образована из материи.

Факт существования нашей Вселенной в форме вещества (барионов) и отсутствие сколь-либо значимого количества антивещества указывает на существенную неполноту современных знаний. Некоторые учёные полагают, что для описания современной картины микромира следует предположить существование дополнительных полей и взаимодействий.

Для объяснения наблюдаемого с ускорением расширения Вселенной космология вводит теоретический вид энергии – тёмную энергию с отрицательным давлением (антигравитацией). Её доля составляет примерно 70 % от всей энергии Вселенной, но из-за низкой плотности (≈10–29 г/см3) экспериментально обнаружить тёмную энергию не представляется возможным.

Если тёмная энергия связана с ускорением Вселенной, возникает закономерный вопрос: почему ускорение Вселенной началось именно с конкретного момента времени? Начнись ускорение раньше, звёзды и галактики не успели бы сформироваться, и для возникновения жизни не осталось бы никаких шансов.

Не исключено, что для расширения Вселенной не требуется обязательное присутствие в пространстве тёмной энергии. Силы гравитации могут уступить место антигравитационным силам при переходе до величин, сопоставимых с наблюдаемой Вселенной. Примером может служить неожиданное изменение сил притяжения на силы отталкивания при попытке сблизить друг с другом нуклоны в атомном ядре на расстояние меньше 0,5 Ферми.

Только 5 % во Вселенной составляет обычная материя, и она хорошо изучена. Об оставшихся 95 %, которые приходятся на тёмную энергию и тёмную материю, мы не знаем практически ничего. Павел Кроупа, профессор из Института астрономии имени Аргеландера при Боннском университете в Германии, изучая движение карликовых спутников галактики, пришёл к выводу что, если работают законы Ньютона, и есть «тёмная» материя, там, где она есть, по законам Ньютона её быть не должно[16].

Если Большой взрыв вызвал расширение Вселенной, должно было возникнуть сильное неоднородное распределение вещества, а это не наблюдается. Непонятно, как в однородной Вселенной образовались неоднородности, явившиеся причиной образования галактик.

Теоретически модель Большого взрыва хорошо разработана, имеет строгое математическое обоснование и подтверждена многочисленными опытами. Но она не включает в себя гравитацию и не даёт ответа на вопрос, что такое тёмная материя, если её существование реально. Также неизвестно, почему у нынешних фундаментальных физических констант именно такие значения. Эти проблемы вызвали к жизни альтернативные теории. Среди них теория струн, петлевая квантовая гравитация, причинная динамическая триангуляция и другие теории. К сожалению, ни одна из них не нашла экспериментального подтверждения.

Первая попытка объединения квантовой теории с гравитацией была предпринята при жизни Эйнштейна. В 1914 году финский физик-теоретик Гуннар Нордстрём, повысив на единицу размерность пространства и применив теорию электромагнетизма Максвелла к пятимерному миру, объединил гравитацию с электромагнетизмом. Впоследствии немецкий физик Теодор Калуца пересмотрел идею Нордстрёма о скрытой размерности и сделал её скрученной. Для этого он применил ОТО к пятимерному миру и получил электромагнетизм. Шведский физик Оскар Кляйн усовершенствовал идею Калуцы по объединению гравитации с электромагнетизмом и из уравнений Эйнштейна с изящностью вывел уравнения Максвелла.

Это была победа! Учёные вместе с Эйнштейном ликовали. Но пятое измерение рождало бесконечное множество решений во времени. В дополнение к этому решения оказались нестабильными. В итоге очередная теория потерпела неудачу. Смертельный нокаут она получила в 30-е годы с открытием сильных и слабых ядерных взаимодействий, о которых и не подозревала.

Теории струн для описания всех известных элементарных частиц потребовалось уже десять измерений пространства, включая известные нам четыре. Идея теории струн состояла в том, что колеблющуюся струну планковских размеров можно представить как возбуждённое состояние пространства, обладающее энергией. Струна была фундаментальна, не имела структуры, а элементарные частицы рождались из возбуждённых мод струн.

В теории струн закон движения определяет законы сил, в то время как в других теориях движение частиц и фундаментальные силы – два разных понятия. В отличие от свободных констант, струнная константа связи – это физическая степень свободы. И вместо того, чтобы быть параметром законов, она становится параметром, отмечающим решения. Из-за этой особенности поведение струны фиксируется не теорией, а особым многомерным миром, в котором она живёт[17].

вернуться

14

Kotuš S., Murphy M. et al. High-precision limit on variation in the fine-structure constant from a single quasar absorption system, 2016. https://arxiv.org/abs/1609.03860.

вернуться

15

Wilczynska M., Webb J. et al. Four direct measurements of the fine-structure constant 13 billion years ago. – Science Advances, 2020. https://www.science.org/doi/10.1126/sciadv.aay9672.

вернуться

16

Тунцов А. Карлики рушат законы механики, 22.04.2009 г. https://www.gazeta.ru/science/2009/04/22_a_2977764.shtml.

вернуться

17

Смолин Ли. Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует: Пер. с англ., 2006. http://www.rodon.org/sl/nsfvtsunichzes/.

7
{"b":"778861","o":1}