Взаимодействие объектов в экспериментальном исследовании может быть одновременно рассмотрено в двух планах: и как деятельность человека, и как взаимодействие самой природы. Вопросы природе задает исследователь, ответы на них дает сама природа.
Познавательная роль эксперимента велика не только в том отношении, что он дает ответы на ранее поставленные вопросы, но и в том, что в ходе его возникают новые проблемы, решение которых требует проведения новых опытов и создания новых экспериментальных установок.
Научные методы теоретического исследования
Одним из существенных методов теоретического исследования является все более широко используемый в науке (в связи с ее математизацией) прием формализации.
Этот прием заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах в отношениях предметов. Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики и математики представляет собой формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.
Особенно широко формализация применяется в математике, логике и современной лингвистике.
Специфическим методом построения развитой теории является аксиоматический метод. Впервые он был применен в математике при построении геометрии Евклида, а затем, в ходе исторического развития знаний, стал применяться и в эмпирических науках. Однако здесь аксиоматический метод выступает в особой форме гипотетико-дедуктивного метода построения теории. Рассмотрим, в чем состоит сущность каждого из названных методов.
При аксиоматическом построении теоретического знания сначала задается набор исходных положений, не требующих доказательства (по крайней мере, в рамках данной системы знания). Эти положения называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию.
Аксиомы - это утверждения, доказательства истинности которых не требуется. Логический вывод позволяет переносить истинность аксиом на выводимые из них следствия. Следование определенным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиоматической системы, сделать это рассуждение более строгим и корректным.
Аксиоматический метод развивался по мере развития науки. "Начала" Евклида были первой стадией его применения, которая получила название содержательной аксиоматики. Аксиомы вводились здесь на основе уже имеющегося опыта и выбирались как интуитивно очевидные положения. Правила вывода в этой системе также рассматривались как интуитивно очевидные и специально не фиксировались. Все это накладывало определенные ограничения на содержательную аксиоматику.
Эти ограничения содержательно-аксиоматического подхода были преодолены последующим развитием аксиоматического метода, когда был совершен переход от содержательной к формальной и затем к формализованной аксиоматике.
При формальном построении аксиоматической системы уже не ставится требование выбирать только интуитивно очевидные аксиомы, для которых заранее задана область характеризуемых ими объектов. Аксиомы вводятся формально, как описание некоторой системы отношений: термины, фигурирующие в аксиомах, первоначально определяются только через их отношение друг к другу. Тем самым аксиомы в формальной системе рассматриваются как своеобразные определения исходных понятий (терминов). Другого, независимого, определения указанные понятия первоначально не имеют.
Дальнейшее развитие аксиоматического метода привело к третьей стадии построению формализованных аксиоматических систем.
Формальное рассмотрение аксиом дополняется на этой стадии использованием математической логики как средства, обеспечивающего строгое выведение из них следствий. В результате аксиоматическая система начинает строиться как особый формализованный язык (исчисление). Вводятся исходные знаки - термины, затем указываются правила их соединения в формулы, задается перечень исходных принимаемых без доказательства формул и, наконец, правила вывода из основных формул производных. Так создается абстрактная знаковая модель, которая затем интерпретируется на самых различных системах объектов.
Построение формализованных аксиоматических систем привело к большим успехам прежде всего в математике и даже породило представление о возможности ее развития чисто формальными средствами. Однако вскоре обнаружилась ограниченность таких представлений. В частности, К. Гёделем в 1931 году были доказаны теоремы о принципиальной неполноте достаточно развитых формальных систем. Гёдель показал, что невозможно построить такую формальную систему, множество выводимых (доказуемых) формул которой охватило бы множество всех содержательно истинных утверждений теории, для формализации которой строится эта формальная система. Другое важное следствие теорем Гёделя состоит в том, что невозможно решить вопрос о непротиворечивости таких систем их же собственными средствами. Теоремы Гёделя, а также ряд других исследований по обоснованию математики показали, что аксиоматический метод имеет границы своей применимости. Нельзя, например, всю математику представить как единую аксиоматически построенную систему, хотя это не исключает, конечно, успешной аксиоматизации ее отдельных разделов.
В отличие от математики и логики в эмпирических науках теория должна быть не только непротиворечивой, но и обоснованной опытным путем. Отсюда возникают особенности построения теоретических знаний в эмпирических науках. Специфическим приемом такого построения и является гипотетико-дедуктивный метод, сущность которого заключается в создании системы дедуктивно связанных между собой гипотез, из которых в конечном счете выводятся утверждения об эмпирических фактах.