Мы видим, что установление эмпирического факта требует применения целого ряда теоретических положений (в данном случае это сведения из области механики, электродинамики, астрофизики и т.д.), но тогда возникает очень сложная проблема, которая дискутируется сейчас в методологической литературе: получается, что для установления факта нужны теории, а они, как известно, должны проверяться фактами. Специалисты-методологи формулируют эту проблему как проблему теоретической нагруженности фактов, то есть как проблему взаимодействия теории и факта. Безусловно, при установлении приведенного выше эмпирического факта использовались многие полученные ранее теоретические законы и положения. В этом смысле, действительно, эмпирический факт оказывается теоретически нагруженным, он не является независимым от наших предшествующих теоретических знаний. Для того чтобы существование пульсаров было установлено в качестве научного факта, потребовалось применить законы Кеплера, законы термодинамики, законы распространения света - достоверные теоретические знания, ранее обоснованные другими фактами. Если же эти законы окажутся неверными, то необходимо будет пересмотреть и факты, которые основываются на этих законах.
В свою очередь, уже после открытия пульсаров вспомнили, что существование этих объектов было теоретически предсказано советским физиком Л. Д. Ландау, так что факт их открытия стал еще одним подтверждением его теории, хотя при установлении данного факта непосредственно его теория не использовалась.
Итак, в формировании факта участвуют знания, которые проверены независимо от теории, а факты дают стимул для образования новых теоретических знаний, которые, в свою очередь, если они достоверны, могут снова участвовать в формировании новейших фактов и т.п.
Перейдем теперь к организации теоретического уровня знаний. Здесь тоже можно выделить два подуровня.
Первый - частные теоретические модели и законы. Они выступают как теории, относящиеся к достаточно ограниченной области явлений. Примерами таких частных теоретических законов могут служить закон колебания маятника в физике или закон движения тел по наклонной плоскости, которые были найдены до того, как была построена ньютоновская механика.
В этом слое теоретического знания, в свою очередь, обнаруживаются такие взаимосвязанные образования, как теоретическая модель, которая объясняет явления, и закон, который формулируется относительно модели. Модель включает идеализированные объекты и связи между ними. Например, если изучаются колебания реальных маятников, то для того чтобы выяснить законы их движения, вводится представление об идеальном маятнике как материальной точке, висящей на недеформируемой нити. Затем вводится другой объект - система отсчета. Это тоже идеализация, а именно - идеальное представление реальной физической лаборатории, снабженной часами и линейкой. Наконец, для выявления закона колебаний вводится еще один идеальный объект - сила, которая приводит в движение маятник. Сила - это абстракция от такого взаимодействия тел, при котором меняется состояние их движения. Система из перечисленных идеализированных объектов (идеальный маятник, система отсчета, сила) образует модель, которая и представляет на теоретическом уровне сущностные характеристики реального процесса колебания любых маятников.
Таким образом, непосредственно закон характеризует отношения идеальных объектов теоретической модели, а опосредованно он применяется к описанию эмпирической реальности.
Второй подуровень теоретического знания - развитая теория. В ней все частные теоретические модели и законы обобщаются таким образом, что они выступают как следствия фундаментальных принципов и законов теории. Иначе говоря, строится некоторая обобщающая теоретическая модель, которая охватывает все частные случаи, и применительно к ней формулируется некоторый набор законов, которые выступают как обобщающие по отношению ко всем частным теоретическим законам.
Таковой, например, является ньютоновская механика. В той формулировке, которую придал ей Л. Эйлер, она вводила фундаментальную модель механического движения посредством таких идеализаций, как материальная точка, которая движется в пространстве-времени системы отсчета под действием некой обобщенной силы. Природа этой силы далее не конкретизируется - ею может быть квазиупругая сила, или сила удара, или сила притяжения. Речь идет о силе вообще. Относительно такой модели и формулируются три закона Ньютона, которые выступают в данном случае как обобщение множества частных законов, отражающих сущностные связи отдельных конкретных видов механического движения (колебание, вращение, движение тела по наклонной плоскости, свободное падение и т.д.). На основе таких обобщенных законов можно далее дедуктивным путем предсказывать и новые частные законы.
Два рассмотренных типа организации научного знания - частные теории и обобщающие развитые теории - взаимодействуют как между собой, так и с эмпирическим уровнем знания.
Итак, научное знание в любой области науки представляет собой огромную массу взаимодействующих между собой различных типов знаний. Теория принимает участие в формировании фактов; в свою очередь, факты требуют построения новых теоретических моделей, которые сначала строятся как гипотезы, а потом обосновываются и превращаются в теории. Бывает и так, что сразу строится развитая теория, которая дает объяснение известным, но не нашедшим ранее объяснения фактам, либо заставляет по-новому интерпретировать известные факты. В общем, существуют разнообразные и сложные процедуры взаимодействия различных слоев научного знания.
Основания научного знания
Существенно то, что все это многообразие знаний объединено в целостность. Эта целостность обеспечивается не только теми взаимосвязями между теоретическим и эмпирическим уровнями знания, о которых уже говорилось. Дело в том, что структура научного знания не исчерпывается этими уровнями - она включает также и то, что принято называть основаниями научного знания. Помимо того, что благодаря этим основаниям достигается целостность предметной области, они определяют также стратегию научного поиска и во многом обеспечивают включение его результатов в культуру соответствующей исторической эпохи. Именно в процессе формирования, перестройки и функционирования оснований наиболее отчетливо прослеживается социокультурная размерность научного познания.