Литмир - Электронная Библиотека
A
A

На высоких плато горячий воздух пустынь охлаждается, становясь более плотным, и соскальзывает вниз по склонам плато, подобно ветрам, с которыми столкнулся Скотт в Антарктике. Но пожары начались потому, что этот воздух был не только сухим, но и жарким. Почему же он нагревается, опускаясь? Откуда для этого берется энергия? Вследствие действия закона идеального газа. В данном случае мы имели дело с фиксированной массой воздуха, который перемещался настолько быстро, что у него просто не было времени на обмен энергией с окружающей средой. Когда поток этого плотного воздуха сползал вниз, атмосфера у подножия склона оказывала на него давление, поскольку внизу оно было выше. Давление на что-либо представляет собой способ придания ему энергии. Вы можете представить, как отдельно взятые молекулы воздуха ударяют о стенки воздушного шара, который движется в их сторону. Они отскакивают с большей энергией, чем до соударения, поскольку отскакивают от движущейся поверхности. Таким образом, объем воздуха в ветрах Санта-Ана сокращался, потому что он сжимался под воздействием окружающей атмосферы. Это сжатие придавало движущимся молекулам воздуха дополнительную энергию, в результате чего температура ветра повышалась. Данное явление называется адиабатическим нагревом. Каждый год, когда начинают дуть ветры Санта-Ана, у жителей Калифорнии появляется дополнительный повод для беспокойства из-за риска возникновения лесных пожаров. После нескольких дней такой жары сухой воздух лишает почву остатков влаги, и для того чтобы разгорелся лесной пожар, достаточно одной искры. При этом источник повышенной температуры – не только жаркое калифорнийское солнце, но и дополнительная энергия, приобретаемая молекулами газа, когда они прижимаются более плотными воздушными массами ближе к океану. Температуру будет изменять все, что способно изменить среднюю скорость молекул воздуха.

Обратный процесс происходит при выдавливании из баллончика взбитых сливок. Воздух, содержащийся в баллончике, быстро расширяется и давит на окружающую среду, в результате чего отдает свою энергию и охлаждается. По этой причине сопло емкости со взбитыми сливками на ощупь холодное: газ, который через него проходит, отдает свою энергию, достигая свободной атмосферы. Поскольку позади него остается меньше энергии, баллончик кажется холодным.

Давление воздуха – лишь показатель того, с какой силой все эти крошечные молекулы ударяют о некоторую поверхность. Обычно мы этого почти не замечаем, так как удары сыпятся с одинаковой силой со всех сторон: если держать двумя пальцами на весу листок бумаги, он останется неподвижным, потому что молекулы воздуха бомбардируют его в равной степени с обеих сторон. Каждый из нас постоянно подвергается воздействию окружающего воздуха, но мы его практически не ощущаем. Именно поэтому людям потребовалось немало времени, чтобы выяснить истинную степень такого воздействия, и полученный ответ их слегка шокировал. Масштаб открытия было несложно оценить, поскольку его демонстрация оказалась чрезвычайно запоминающейся. В истории науки не так уж часто какой-либо важный научный эксперимент напоминает увлекательное театральное представление. Однако в описываемом мною случае присутствовали все необходимые составляющие театрального зрелища: лошади, тревожное ожидание развязки, эффектная концовка и даже высокая царственная особа.

Трудность задачи заключалась в том, что для определения силы давления воздуха на тот или иной предмет следовало полностью исключить воздействие воздуха на другую сторону этого предмета, то есть создать по эту другую сторону вакуум. В четвертом столетии до нашей эры Аристотель заявил, что «природа не терпит пустоты», и эта точка зрения преобладала почти тысячелетие. Создать вакуум казалось невозможным. Но где-то около 1650 года немецкий физик Отто фон Герике изобрел первый в мире вакуумный насос. Вместо того чтобы написать научную статью на эту тему и заняться изучением других физических явлений, ученый решил устроить настоящее представление, призванное продемонстрировать его изобретение[3]. Возможно, этому способствовало и то, что Отто фон Герике был не только физиком, но и известным политиком и дипломатом; к тому же он был в хороших отношениях с правителями того времени.

Фердинанд III – император Священной Римской империи и король части Венгерского и Чешского королевств – прибыл 8 мая 1654 года, окруженный своей многочисленной свитой, к зданию Рейхстага в Баварии. Отто фон Герике предъявил почтенной публике полую медную сферу 50 сантиметров в диаметре. Сфера состояла из двух отдельных полусфер, соприкасающихся между собой идеально отшлифованными, ровными поверхностями. Снаружи к каждой из полусфер было приварено по кольцу для крепления двух канатов, за которые можно было тянуть с двух сторон, чтобы разделить полусферы. Отто фон Герике смазал места соприкосновения двух полусфер и плотно сжал их друг с другом, а для откачки воздуха изнутри образовавшейся сферы воспользовался своим вакуумным насосом. Казалось, ничто не должно удерживать вместе две половины сферы, однако после удаления из нее воздуха они вели себя так, словно были намертво склеены друг с другом. Отто понимал, что вакуумный насос позволяет ему оценить силу воздействия атмосферы на те или иные объекты. Миллиарды крошечных молекул воздуха бомбардируют наружную поверхность сферы, заставляя ее половины прочно держаться друг друга, а внутри сферы нет ничего, что бы противодействовало силам, давящим на нее снаружи[4]. Две полусферы можно было разъединить, только отрывая друг от друга с силой, превышающей ту, которая удерживает их вместе.

Затем в действие вступили лошади. Каждую полусферу тянули изо всех сил в противоположные стороны по 8 лошадей (всего 16 лошадей). Император и свита с изумлением наблюдали за тем, как лошади безуспешно пытались преодолеть силу невидимого воздуха, сжимавшего две полусферы. Единственным, что удерживало их вместе, была сила молекул воздуха, бомбардирующих сферу величиной с внушительный пляжный мяч. Но даже усилий стольких лошадей оказалось недостаточно, чтобы разъединить полусферы. Когда сражение закончилось в пользу молекул воздуха, Отто фон Герике с торжествующим видом открыл клапан, чтобы впустить воздух внутрь сферы, – и две полусферы рассоединились сами собой. Вопрос о победителе в этом соревновании также отпал сам собой. Давление воздуха оказалось гораздо сильнее, чем кто-либо мог предположить. Если взять весь воздух, откачанный из сферы примерно такого же размера, как в эксперименте Отто фон Герике, и составить из него воображаемый вертикальный столб, то он мог бы (теоретически) выдержать (за счет направленного вверх давления воздуха) нагрузку порядка 2000 килограммов, что примерно соответствует весу крупного взрослого носорога. Это означает, что если вы нарисуете на полу окружность диаметром 50 сантиметров, то давление воздуха на ограниченную ею площадку также равняется весу 2000-килограммового носорога. Крошечные невидимые молекулы воздуха действительно бомбардируют нас с большой силой. Отто провел множество таких представлений для разных аудиторий, а его знаменитая сфера получила известность как магдебургские полушария (Магдебург – родной город ученого).

Эксперименты Отто фон Герике отчасти стали знамениты еще и потому, что о них многие писали. Идеи ученого вошли составной частью научной мысли в книгу Гаспара Шотта, опубликованную в 1657 году. Сведения о вакуумном насосе Отто фон Герике вдохновили Роберта Бойля и Роберта Хука на проведение экспериментов по изучению давления газов.

Вы можете самостоятельно провести подобный эксперимент – без участия лошадей и императора. Найдите кусок толстого, ровного картона, достаточно большой, чтобы полностью закрыть отверстие стакана. Эксперимент лучше проводить над раковиной, на всякий случай. Наполните стакан водой – до ободка и положите сверху кусок картона. Прижмите его параллельно поверхности воды к ободку так, чтобы между ней и картоном не оставалось воздуха. Затем переверните стакан вверх дном – и уберите руку. Картон, на который оказывает давление вся вода в стакане, тем не менее не отпадает. Этому препятствуют молекулы воздуха, которые бомбардируют картон снизу, подталкивая вверх. Давления молекул воздуха вполне достаточно для удержания воды в стакане.

вернуться

3

В наши дни не рекомендуется организовывать публичные демонстрации тех или иных научных открытий.

вернуться

4

Мы не знаем точно, какую часть воздуха изнутри сферы удавалось откачивать с помощью вакуумного насоса Отто фон Герике. Весь воздух он, конечно, не мог удалить, но большую часть воздуха ему, несомненно, удалось откачать.

7
{"b":"718921","o":1}