Литмир - Электронная Библиотека

М. Ф.: И к каким результатам это привело?

И. Б.: Раньше для активации нейронных сетей использовали сигмоиду, но оказалось, что с функцией ReLU гораздо проще обучать глубокие сети с большим количеством уровней. Переход случился примерно в 2010 г. Появилась огромная база данных ImageNet, предназначенная для отработки и тестирования методов распознавания объектов на изображениях и машинного зрения. Чтобы заставить людей поверить в методы глубокого обучения, нужно было показать хорошие результаты на примере этой базы. Это смогла сделать группа Джеффри Хинтона, которая использовала в качестве основы работы Яна Лекуна, посвященные сверточным сетям. В 2012 г. эти новые архитектуры позволили значительно улучшить существующие методы. За пару лет на эти сети переключились все, кто занимался компьютерным зрением.

М. Ф.: То есть именно в этот момент началось настоящее глубокое обучение?

И. Б.: Нет, совокупность факторов, ускоривших глубокое обучение, целиком сложилась только к 2014 г.

М. Ф.: То есть к моменту, когда этим занялись не только университеты, но и такие компании, как Google, Facebook и Baidu?

И. Б.: Именно так. Процесс ускорения начался чуть раньше, примерно в 2010 г., благодаря таким компаниям, как Google, IBM и Microsoft, которые работали над нейронными сетями для распознавания речи. Эти нейронные сети к 2012 г. Google начала использовать на смартфонах Android. Тот факт, что одну и ту же технологию глубокого обучения смогли применить как для компьютерного зрения, так и для распознавания речи, оказался по-настоящему революционным. Это привлекло внимание к сфере ИИ.

М. Ф.: Удивляет ли вас тот факт, что нейронные сети, с которыми вы много лет назад начали работать, стали центральным элементом проектов в таких крупных компаниях, как Google и Facebook?

И. Б.: Конечно, изначально этого никто не ожидал. В области глубокого обучения был сделан ряд важных, удивительных открытий. Я уже упоминал, что распознавание речи появилось в 2010 г., а о компьютерном зрении стали говорить в 2012 г. Пару лет спустя начался прорыв в сфере машинного перевода, который в 2016 г. привел к появлению сервиса Google Translate. В этом же году началось активное развитие программы AlphaGo. Всего этого мы не ожидали. Помню, как в 2014 г. я просматривал результаты генерации подписей к изображениям и поражался тому, что компьютер смог это сделать. Если бы годом раньше меня спросили, реально ли подобное, я бы ответил «нет».

М. Ф.: Это действительно нечто потрясающее. Конечно, осечки иногда происходят, но в большинстве случаев мы имеем поразительно точный результат.

И. Б.: Осечки неизбежны! Системы пока не обучены на достаточном количестве данных, кроме того, требуется изрядно продвинуться в фундаментальных исследованиях, чтобы они действительно научились распознавать объекты на изображениях и понимать язык. Пока до этого далеко, но ведь даже современного уровня производительности мы изначально не ожидали.

М. Ф.: А как вы пришли к исследованиям в области ИИ?

И. Б.: В юности я активно читал научную фантастику. Подозреваю, что это могло на меня повлиять. Именно оттуда я узнал об ИИ и трех законах робототехники Азимова, и у меня появилось желание изучать физику и математику. А чуть позже мы с братом заинтересовались компьютерами. На сэкономленные деньги мы приобрели компьютер Apple IIe, а затем Atari 800. Программного обеспечения тогда было мало, поэтому мы научились писать программы на языке BASIC.

Я так увлекся программированием, что занялся изучением вычислительной техники, а затем получил ученую степень в области computer science. В 1985 г., во время обучения в магистратуре, я начал читать статьи о первых нейронных сетях, в том числе работы Джеффри Хинтона. Это было любовью с первого взгляда. Я сразу понял, что хочу работать именно в этой сфере.

М. Ф.: Какой совет вы могли бы дать тем, что хочет заниматься глубоким обучением?

И. Б.: Прыгайте в воду и начинайте плавать. Сейчас информация любого уровня доступна в виде учебников, видео и библиотек с открытым исходным кодом. В сети можно бесплатно прочитать книгу «Глубокое обучение», соавтором которой я являюсь. В ней много информации для новичков. Студенты старших курсов зачастую тренируются, читая научные работы и пытаясь самостоятельно воспроизвести описанные там результаты, затем стараются попасть в лаборатории, проводящие исследования такого рода. Сейчас самое благоприятное время для карьеры в сфере ИИ.

М. Ф.: Из ключевых фигур в сфере глубокого обучения вы единственный, кто занимается только наукой. Большинство по совместительству сотрудничает с различными компаниями. Почему вы выбрали этот путь?

И. Б.: Я всегда высоко ценил научное сообщество, свободу работать на общее благо, делая вещи, которые, как я считаю, могут сильно повлиять на происходящее. Мне нравится работать со студентами, как психологически, так и с точки зрения продуктивности исследований. Уйти работать в индустрию – значит лишиться многого из этих вещей.

Кроме того, я хочу остаться в Монреале, а переход в индустрию означает переезд в Калифорнию или Нью-Йорк. Однажды я подумал, что можно попробовать создать новую Кремниевую долину для ИИ. В результате появился MILA, где проводятся фундаментальные исследования, задающие темп работы над ИИ во всем Монреале. Мы сотрудничаем с научно-исследовательским центром Vector Institute в Торонто и компанией Amii в Эдмонтоне в рамках канадской стратегии по продвижению ИИ в науке и экономике с пользой для социума.

М. Ф.: Раз уж вы упомянули об экономике, хотелось бы поговорить о рисках в этой сфере. Я много писал о том, что ИИ может привести к новой промышленной революции и потере множества рабочих мест. Как вы относитесь к этой гипотезе? Не преувеличена ли в данном случае угроза?

И. Б.: Нет, она не преувеличена. Непонятно только, когда это произойдет – в ближайшее десятилетие или намного позже. И даже если завтра мы полностью прекратим фундаментальные исследования в области ИИ, те результаты, которых мы уже достигли, позволят кому-то получить социальное и экономическое преимущество за счет простого создания новых товаров и услуг.

Уже собрано огромное количество данных, которые мы пока не используем. Например, в здравоохранении применяется лишь малая доля доступной информации. А ее становится все больше, потому что каждый день оцифровываются новые данные. Производители аппаратных средств совершенствуют процессоры для глубокого обучения, что без сомнения изменит наш мир.

Конечно, прогресс в этой сфере замедляют социальные факторы. Общество не может моментально измениться, даже если технология идет вперед семимильными шагами.

М. Ф.: Реально ли решить проблему безработицы введением безусловного базового дохода?

И. Б.: Я думаю, это может сработать, но сначала нужно избавиться от морального ограничения, согласно которому у неработающего человека дохода быть не должно. Мне такая точка зрения кажется ненормальной. Думаю, нужно ориентироваться на то, что лучше для экономики и для счастья людей. Имеет смысл провести эксперимент, чтобы попытаться найти ответ на эти вопросы.

А единого ответа не будет. Позаботиться о людях, которые в результате новой промышленной революции останутся не у дел, можно разными способами. Мой друг Ян Лекун сказал, что если бы в XIX в. можно было предвидеть последствия промышленной революции, возможно, люди смогли бы избежать множества страданий. Если бы еще тогда, а не в 1950-х мы создали систему социальной защиты, которая сейчас существует в большинстве западных стран, сотни миллионов людей жили бы намного лучше. А ведь для новой революции, скорее всего, потребуется гораздо меньше столетия, и потенциальные негативные последствия могут быть еще сильнее.

Мне кажется, думать об этом нужно уже сейчас. Искать варианты, позволяющие минимизировать нищету и оптимизировать глобальное благополучие. Думаю, выход есть, но мы вряд ли его найдем, если будем держаться за старые ошибки и религиозные убеждения.

6
{"b":"713557","o":1}