Литмир - Электронная Библиотека

О тепловидении и его применении для контроля состояния электрооборудования известно несколько десятков лет. Тепловизионный контроль стали обычными и повседневными инструментами в руках специалистов, занимающихся диагностикой и ремонтом оборудования электростанций, распределительных сетей и подстанций [2, 3, 5].

Метод тепловизионного контроля с помощью средств инфракрасной диагностики и хроматографический анализ газов, растворенных в трансформаторном масле (ХАРГ), выполняемые в соответствии с [1, 2] позволяют выявить целый ряд различных дефектов высоковольтного электрооборудования (ЭО).

Тепловизионный контроль проводится для выяснения теплового состояния разъединителей, трансформаторов тока (ТТ) и напряжения (ТН), разрядников и ограничителей перенапряжения (ОПН), конденсаторов связи, масляных и воздушных выключателей, ошиновки распределительных устройств (РУ), качества пайки обмоток статора турбогенераторов при ремонтных работах, высоковольтных вводов силовых трансформаторов, систем охлаждения трансформаторов, электродвигателей, генераторов и др. Ведется также контроль состояния дымовых труб и газоходов на тепловых электростанциях, обнаружение мест присосов холодного воздуха и т.д. [5].

В учебном пособии рассмотрены примеры использования инфракрасной камеры P-60 фирмы “Flir Systems” (Швеция), тепловизоров типа “INFRAMETRIKS -740” (США) и “Иртис” (Россия).

В [8, 12] затронуты вопросы применения тепловизионных приемников для выявления дефектных паек соединительных головок стержней обмотки статора турбогенераторов (ТГ) в процессе эксплуатации, как средства контроля качества пайки соединительных головок стержней статорных обмоток ТГ с применением твердых припоев при их ремонтах. Тепловизионный контроль проводится при открытых лобовых частях обмотки статора с выведенным ротором и предварительным нагревом от источника постоянного тока (например – резервного возбудителя) током величиной порядка 1000 А.

При этом, необходимым условием эффективности обследования головок стержней обмотки статора является наличие превышения температуры обмотки генератора над температурой окружающей среды турбинного цеха.

Следует отметить следующий важный момент: для обеспечения возможности сопоставления результатов измерений величины избыточной температуры T, выполненных на ТГ различных типов и мощностей необходимо выполнение требования по обеспечению одинаковой плотности тока в прогреваемой обмотке. В рассмотренных случаях ремонта ТГ этот параметр не контролировался. При дальнейших ремонтах ТГ это предполагается делать. Кроме тепловизионного контроля, существует и применяется для контроля паек гидрогенераторов (сотни головок) токовихревой метод.

Согласно пункту 3.6 [1] максимальное отличие величины сопротивления постоянному току между ветвями обмотки статора ТГ не должно превышать 5%, а отклонение от паспортного значения не более 2% [1, 2, 8]. Турбогенератор ТГ-6 Тольяттинской ТЭЦ типа ТВФ-60-2, (год выпуска 1967г., капремонт с полной перемоткой обмоток 1991г.) находился в длительном резерве. Результаты измерения сопротивления постоянному току обмоток статора показали, что максимальное отличие Rmax между ветвями составило 6,8% (между ветвями А1 и А2 фазы А). Таким образом, Rmax между ветвями А1 и А2 фазы А превышало допустимый ОНИЭ уровень в 5%.

Тепловизионное обследование лобовых частей обмотки статора показало повышенный нагрев мест паек в семи точках с избыточной температурой T в диапазоне от 4,1 до 6,6 град.С по сравнению с соседними “холодными” (реперными) точками. Из семи точек две точки приходятся на ветвь А2 фазы А, которая имеет повышенное омическое сопротивление Rmax= 6,8% (между ветвями) .

На основании этих результатов проведена перепайка стержней ветви А2 фазы А обмотки статора ТГ , Rmax между ветвями А1 и А2 фазы А составило 5,07%. После 1-й перепайки отмечено снижение омического сопротивления R на фазе А – на 1,8%. Rmax между ветвями А1 и А2 фазы А по-прежнему превышало допустимый ОНИЭ уровень в 5%.

Повторное тепловизионное обследование показало повышенный нагрев двух головок в ветви А2, имеющей максимальное отклонение Rmax. Избыточная температура T в районе этих двух точек составила от 5 до 7,6 град.С. То есть, было обнаружено, что тепловое состояние головки ветви А2 (до 1-й пайки), а соответственно и качество ее пайки ухудшилось.

Поэтому была проведена перепайка двух соединительных головок в ветви А2 фазы А . Обнаружен дефект пайки головки ветви А2 . Далее Rmax между ветвями А1 и А2 уменьшилось и составило 4,4%, что соответствует допустимым нормам по ОНИЭ [1].

Турбогенератор ТГ-4 ТЭЦ Волжского Автозавода типа ТВФ-120-2 (год выпуска 1970г.) отключился от сети действием поперечной дифференциальной защиты генератора. Причиной срабатывания защиты явилось нарушение пайки соединительной головки ветви С2 фазы С обмотки статора (обрыв ветви). Предыдущее измерение сопротивления постоянному току обмоток статора показало, что максимальное отличие Rmax между ветвями составляет 3,49 % . Максимальное отклонение от заводских данных составляло 2,2 % на ветви С2. После перепайки обмотки статора было проведено тепловизионное обследование состояния качества паек головок стержней обмотки статора . Результаты измерений указали на повышенный нагрев мест паек в районе на ветви С2 в точках с T в диапазоне от 3,6 до 3,9 град.С. После перепайки максимальное отличие Rmax между ветвями составило 3,1 % , от заводских данных – 1,8% на ветви С1, что соответствует допустимым нормам по ОНИЭ [1, 2].

По результатам тепловизионного обследования ТГ-6 ТоТЭЦ, ТГ-4 ТЭЦ ВАЗ и ТГ2 Сызранской ТЭЦ была построена зависимость максимального отличия по сопротивлению постоянному току обмоток статора Rmax (между ветвями в %) от величины избыточной температуры T . Выделена также пороговая граница в 5 % для отклонения Rmax по ОНИЭ. Рассмотрение этой зависимости Rmax от T позволило сделать вывод о величине порогового значения T = 4-5 град.С, при превышении которого возможно наличие дефекта в пайке соединительных головок стержней обмотки статора турбогенераторов (ТГ) в процессе эксплуатации. Пороговый критерий T = 4-5 град.С не является окончательным и будет уточняться [5, 8, 12].

Турбогенератор ТГ2-25-2 Сызранской ТЭЦ (год выпуска 1956) обследовался во время капитального ремонта при помощи тепловизионного контроля при открытых лобовых частях обмотки статора с выведенным ротором и предварительным нагревом от резервного возбудителя постоянным током величиной порядка 600 Ампер. В ходе капитального ремонта проводилась полная перемотка обмотки статора турбогенератора, перепайка дефектных соединительных головок стержней проводилась с использованием циркониевого припоя марки ПМФОЦр 6-4-0,03.

      При первичном тепловизионном обследовании на термограмме со стороны возбудителя обнаружено превышение температуры дефектных головок стержней (точки №1, №2, №3, №4, №5, №6, №7, №10) над температурой соседних “холодных” точек T= от 3,1°С до 6,2°С при разнице величины омического сопротивления Rmax=15% между фазами, что значительно превышает норму, указанную в ОНИЭ [1, 2]. После серии последовательных перепаек дефектных головок стержней обмотки статора турбогенератора разница величин омического сопротивления Rомич. между фазами снизилась вначале с Rmax=15% до 7,6%, а затем до 4,2%.

Тепловизионное обследование после очередной перепайки показало, что на термограмме, вид со стороны возбудителя, количество дефектных паек головок стержней уменьшилось с 8 до 2-х – точки №1, №5 и T составило от 3,3°С до 5,5°С при Rомич.= 3,2%. Это демонстрирует эффективность применения тепловизионного контроля для контроля качества пайки соединительных головок стержней статорных обмоток турбогенераторов в качества инструмента последовательной оценки качества паек [5-6, 8, 12, 20-22].

1.2. Инфракрасная диагностика теплового состояния болтовых соединений и дефектов разъединителей

Тепловидение позволяет выявлять аварийные дефекты ЭО подстанций с сильными нагревами и значительными перепадами температур по сравнению с температурой окружающей среды (максимальное в данном разделе T=116°С). Кроме аварийных, в ходе тепловизионного обследования обнаруживаются нагревы болтовых соединений шинных и линейных разъединителей, которые могут устраняться по мере возможности отключений.

2
{"b":"712949","o":1}