Вместе с тем, данная функция ОТС, ориентированная на выявление гомологий, не затрагивает той проблемы, которая определяется как «теоретический синтез» или «обобщение», вследствие чего открытым остается вопрос о возможностях ОТС служить средством возрастания информационной емкости научного знания. Иными словами, проблематичными оказываются рамки ОТС в следующем отношении: способно ли системное изображение объекта выступать в роли концептуальной схемы, теории, дающей, скажем, целостную картину объекта? Соответственно, может ли теоретическое понимание на основе системных принципов и законов выступать в качестве средства объяснения и предсказания?
По всем этим вопросам нет единства мнений, и отношение ОТС к их решению оценивается по-разному. Так, в противовес утверждениям Берталанфи о принципиальной возможности теоретического объяснения и синтеза на базе идеи изоморфизма законов строения и поведения различных систем выдвигался тезис об абстрактно-универсальном характере такого синтеза и неспособности подобных вариантов ОТС преодолеть барьеры между науками.[39]
Анализ аргументов, ограничивающих возможности ОТС в реализации обобщающей функции в науке, убеждает в следующем: ценность идеи изоморфизма в рамках теорий, ориентированных на формулирование так называемых общих законов организации (например, Берталанфи, Вуджер), снижается из-за игнорирования проблемы упрощения. Между тем разработка понятия и основанных на нем методов упрощения способна, на мой взгляд, дать средства для различения, дифференциации уровней организации и подвести прочное основание под идею изоморфизма, а также связанную с ней идею теоретического синтеза наук. При этом я имею в виду два важнейших аспекта организации, выразимых понятием «структура» и «функция».
Хорошо известно, что идея изоморфизма базируется на сохранении отношений, посредством которых реализуется та или иная форма. Содержание же этой формы может быть самой различной природы. Если рассматривать систему в плане ее поведения, то с позиций изоморфизма следует сказать, что поведение не определяет однозначно внутренних связей системы. В таком случае, очевидно, что для перехода к индивидуальности связей требуется поиск дополнительных средств. Вопрос состоит не в том, есть ли такие средства в действительности. Они есть и применяются, но рутинно. Проблема же заключается в поиске способа теоретического сокращения числа возможных связей.
Подробное рассмотрение этой проблемы составляет одну из задач следующих параграфов данной главы. Здесь же замечу, что с этих позиций сила кибернетики как одного из вариантов ОТС заключается в четкой ориентации на поиск методов упрощения, осуществляемых в русле идей и методов оптимизации.
3.2. Кибернетика и вероятность (подход У. Росс Эшби)
Разрабатывая принципиальные основы кибернетики, Эшби в целом ряде своих книг и статей справедливо отмечал связь последней с поворотом в науке к исследованию систем и сложностей. В гносеологическом плане он характеризовал этот поворот как шаг от анализа к синтезу, к целостности. Так он писал: «... сейчас появляется новая научная дисциплина, которая исследует системы без их расчленения». [40]
Эшби считал правомерным идти в построении общей теории систем от таких идеализаций, которые описывали бы класс «всех мыслимых систем». Такой путь, по его словам, позволяет решать многие задачи в общем виде, опираясь на математическую теорию, без которой научное исследование превратилось бы в нагромождение частных случаев.
В центре его теории систем находится понятие «машины». Формальное определение «машины», описывающее названный выше класс систем, включает те из них, которые образованы любым набором переменных. Кибернетический подход, принимая за основу поведение систем, интересуется теми из них, которые являются информационно непроницаемыми. С формальной точки зрения это означает, что поведение любой такой системы соответствует отображению «М» в «М», где «М» множество состояний т.[41] С содержательной точки зрения это означает, что кибернетику интересует не всякое поведение, а прежде всего воспроизводимое, регулярное или детерминированное. [42]
Конкретное определение системы, выступающее исходной идеализацией данной концепции, задается посредством понятия дискретной машины. Для этой цели Эшби использовал аппарат преобразований. Смысл последнего - в отбрасывании неясностей и неопределенностей в характеристике свойств системы. При этом используется важное допущение - конечность различий.[43] Специфическая черта класса машин, которые рассматривал Эшби - детерминированность. Последняя выразима через характеристику их поведения: они ведут себя так же, как однозначное замкнутое преобразование. Простейший тип машин этого класса составляют изолированные системы (т.е. без выхода). Таковые в своих изменениях из некоторого начального состояния проходят регулярно одну и ту же последовательность состояний. При этом состояние определяется точно ограниченным условием или свойством системы. [44]
Эшби специально подчеркивал теоретический уровень используемого им понятия система. В его трактовке система не есть просто некоторый эмпирический объект, но является понятием для выражения особой связи компонентов (на математическом языке - переменных), главная характеристика которой задается замкнутым однозначным преобразованием. [45] Для подобного задания системы в ряде случаев приходится обращаться к обобщенной форме выражения переменных - векторам. Эшби указывал, что в качестве переменной, изменения которой характеризуют поведение системы, может выступать вероятность. И на уровне вероятностей можно фиксировать поведение системы. [46]
Усложняя способы описания систем, Эшби вводил показатель, характеризующий изменение самого поведения машины (переход от одного преобразования к другому), который называет параметром. В его трактовке параметр тождественен входу машины.[47] Наличие входов позволяет соединять машины друг с другом. При этом состояние выхода одной должны соответствовать входам другой. Частным случаем соединения является так называемая «обратная связь». Для этого вход одной из двух машин должен испытывать воздействие выхода другой и наоборот. [48]
Развитые выше представления Эшби считал возможным применять к исследованию сложных систем. При этом он брал во внимание чисто гносеологическую характеристику сложности - описывая познавательную ситуацию при столкновении со сложной системой посредством введения понятия неопределенности ее поведения относительно данного наблюдателя.[49] Для сложных систем, по словам Эшби, не применим по существу метод разделения переменных. Системы становятся исключительно динамичными и внутренне связанными. Ранее же в основном останавливали свое внимание на простых и приводимых системах. Последнее имеет место, когда система состоит из ряда функционально независимых частей.[50]
Эшби интересовался свойствами систем, характеризующихся информационной непроницаемостью. Для этого использовался такой исследовательский прием, как метод «черного ящика». Под «черным ящиком» понимался объект, внутреннее устройство которого по каким-либо причинам недоступно исследователю. Обычный путь его изучения таков: манипулируя по своему желанию с входами и наблюдая выходы, пытаются сделать вывод о том, что может содержаться внутри «ящика».
Теория систем, по Эшби, имеет дело не с тем или иным «ящиком», но рассматривает ряд общих вопросов в связи с использованием названного метода. В число таких вопросов он включал следующие:
1. Какова должна быть общая стратегия исследования «черного ящика» любой природы?
2. Какого рода операции следует проводить над данными, полученными с выходов ящика, чтобы выводы были логически допустимыми?
3. Что можно в принципе вывести из поведения ящика и что принципиально не поддается дедукции?[51]
Используя некоторое представление общей теории связи, Эшби определял итог исследования «черного ящика» как протокол (или запись значений и состояний входов и выходов во времени). Тогда перекодирование протокола - единственный способ получения знания о «черном ящике». [52] Задача исследования заключается в том, чтобы обнаружить закономерность, устойчивость, точнее статистическую структуру в поведении «черного ящика». Эшби указывает, что в таком случае со статистической точки зрения протокол должен содержать статистическую избыточность. [53] Конкретным решением этой задачи может являться установление таких свойств, как машиноподобность, функциональные связи системы, число степеней свободы (которое соответствует числу параметров, однозначно определяющих поведение системы). [54]