Белковые молекулы обладают высочайшей организованностью. Это неоспоримый факт. Но есть еще одно важное обстоятельство: для их изучения требуется понятие самоорганизации. Это обстоятельство настойчиво подчеркивал М. Эйген. Для истолкования сверхсложной организации живого М Эйген использовал представление о семантической (селективной) информации. Он отмечал, что в информационном процессе есть физическая компонента - сигналы. Но есть и формальная компонента - код (знаковая система). Сочетания, группировки сигналов могут иметь характер кода, если они упорядочены и к ним находится интерпретирующий ключ. Главное же - это наличие функциональной упорядоченности сигналов, которая обеспечивает сохранение живой организации (и её дальнейшее развитие).
Из положений, рассмотренных М. Эйгеном, напрашивается вывод, что для систем, организованных как знаковые структуры, законы информации имеют универсальное значение. Управляющее воздействие информации обнаруживается там, где есть альтернативы, и есть возможность выбора альтернатив. Информации требуется тем больше, чем больше надо отсечь альтернатив. Процесс не требует информационной регуляции, если он идёт однозначно, без альтернатив, если все возможности кроме одной равны нулю. Известно, что альтернативы могут распределяться случайно-равномерным образом, тогда для их выбора нет предпочтительных условий. Но могут существовать и другие ситуации, когда возможности выбора альтернатив неодинаковы. Общим таким условием является, как полагал М. Эйген, избыточность ряда или одной возможности [11]. Так, например, некоторые альтернативы могут возникать чаще других, и они будут выделяться по их частоте. Могут также возникать предпочтительные последовательности в выборе альтернатив, когда выбор одной тесно обуславливает выбор некоторых иных (например, в белке есть сложные условия соседства аминокислотных остатков). Но любое ограничение неопределенности выбора альтернатив правомерно характеризовать как прирост информации. Существенно, что этот прирост возникает в рамках самодетерминированого процесса.
Развивая свою концепцию, М. Эйген утверждал, что формирование биомолекулярных систем моделируется образами теории игр. Наиболее подходящими к этому случаю оказываются модели стратегических игр. За основу Эйген брал модели «игры в бисер». В рамках подобной игры есть определенные правила выбора. Есть также фиксированный конечный временной интервал игры. Наконец, имеется результат, обусловленный серией выбора. Во множестве серий этот результат является статистическим параметром, колеблющимся вокруг некоторого среднего значения.
По Эйгену, возможен тип игры, который не связан с совершенно детерминированным результатом - вследствие нивелирования флуктуации распределения вероятностей. В «игре» хотя и возможен отбор лишь одного состояния или альтернативы, но какая из них «выживает» заранее сказать нельзя, поскольку может сработать механизм флуктуационных катастроф для ряда альтернатив. Правда срабатывает и защита от катастроф - благодаря избыточности некоторых из альтернатив. Об этом Эйген прямо не говорит, но именно так функционирует его модель «игры в бисер».
Надо добавить, что усиление флуктуации становится новой детерминантой, действующей как фактор отбора и влияющей на направленный процесс эволюции состояний системы. Такой процесс, по Эйгену, охватывается понятием гиперцикла, отражающим особый класс самоорганизующихся химических цепей. Существование гиперцикла предполагает наличие высокоэнергетического строительного материала, который может репродуцировать свои составные части, но может ещё не быть индивидуальным живым существом [12].
Новизна моделирующего подхода в концепции М. Эйгена состоит в том, что гиперцикловые системы рассматриваются в ней в ряду факторов универсальной эволюции. Базой к тому служит формирование самодетерминированной организации, законы функционирования которой могут служить объяснением перехода от преджизни к живым молекулярным системам.
3.6. Кибернетика и системное моделирование
Проблемы моделирования, поднимаемые и обсуждаемые кибернетикой, разнообразны и многоаспектны. Их обсуждению посвящена серьёзная литература [13]. Не претендуя на всесторонний анализ этих проблем, сосредоточу внимание на таких фундаментальных идеях, разработка которых выдвигает кибернетику в ряд отраслей знания, сформировавших современную методологическую тенденцию моделирования сложных систем.
В первую очередь следует назвать разработку идей и представлений об управляющей системе, об информационном характере управляющего процесса. Суть дела заключается в том, что изменение состояний системы обеспечивается не прямым принуждением, а выступает в обрамлении некоторой стратегии поведения системы и предполагает достижение определенной цели ее функционирования. В этом случае и говорят, что вместо принуждения действует управление, которое осуществляется путем саморегулирования и выбора из ряда альтернативных путей изменения.
Управление же неразрывно связано с целевым отношением системы к действиям внешней среды. Описание такого отношения не может быть уложено в причинно-следственный ряд, даже если предположить переход внешней причины во внутреннюю. На самом деле для кибернетической системы характерна своеобразная нейтральность к действию внешних факторов. Использование подобной нейтральности становится фактором приспособления соответствующей системы к внешним условиям, которые осваиваются применительно к логике целевого функционирования системы. Существенно, что здесь имеет место не простое ослабление внешних воздействий, а устанавливается новый принцип бытия системы, изменения которой обусловлены согласованием её входов и выходов с ее внутренним состоянием.
Как моделируется подобное согласование? Оно покоится на принципах обработки информации. Кибернетика рассматривает замкнутые циклы обработки информации в пределах компенсирующих управляющих процессов. Наиболее изучены сегодня те процессы, которые реализуются с помощью ЭВМ. Среди последних выделяются цифровые вычислительные машины, использующие информацию в виде числовых кодов. Сфера их действия универсальна. Они функционируют в автоматическом режиме. Описание процесса обработки информации (арифметического, логического) сообщается машине программой, первоначально записанной на бумаге в виде некоторого текста на языке, называемом алгоритмическим. ЭВМ снабжается особым устройством - памятью, в которой фиксируются вводимая информация, программа, а также промежуточные и окончательные результаты обработки информации. Для автоматического согласования всех устройств, связанных с потоком информации, служит блок управления.
Ориентация кибернетики на создание ЭВМ привела к тому, что её основным методом стал метод алгоритмического описания управляющих систем. Соответственно сформировалась и математическая основа кибернетики как разработка управляющих алгоритмов (программ). Специалисты-кибернетики знают, что для реализации некоторого процесса управления, т.е. процесса переработки информации, необходимо построить такой алгоритм, такую же или примерно такую же переработку информации, как и исходный процесс, и оценить качество приближения.
Однако существуют кибернетические системы, способные функционировать не только по стратегии, заложенной в управляющем алгоритме, но и изменять своё поведение в соответствии со свежей накапливаемой информацией. Например, известны кибернетические системы, которые могут ориентироваться на частоту появления событий и их новизну, запоминая с наибольшей вероятностью события, протекающие весьма часто, и вырабатывая своего рода навык поведения в типично повторяющихся условиях среды. Есть системы, способные к непрерывному уточнению и обновлению данных об объекте, записанных на матрице запоминающих устройств. Процесс управления при этом направлен на идентификацию модели объекта с реальным объектом. Кроме того, известны так называемые системы адаптации, реализующие итерационный процесс поиска усреднённых прототипов. Такие системы используют короткий интервал текущей информации, тогда как названные выше обучающие системы используют более длинные выборки. Наконец, выявлены самоорганизующиеся системы, в которых процессы реализуются в рамках сложных сетей взаимодействий элементов, причём, каждый элемент несёт собственный алгоритм действия, находящийся под интегральным воздействием как внешних, так и внутренних регулирующих факторов. В результате процесса самоорганизации сеть постепенно оптимизирует свои показатели в направлении лучшего решения задач управления. С позиций искусственного интеллекта эти вопросы освещаются многими исследователями [14].