Литмир - Электронная Библиотека
A
A

Основной инструмент, используемый теперь для первичного обнаружения и идентификации некультивируемых микробов, представляет собой целую серию лабораторных процедур, которые часто называют «конвейером». Это подразумевает, что все процедуры должны выполняться в определенном порядке[32]. На входе в «конвейер» помещается проба, а на выходе мы получаем перечень содержащихся в ней видов микроорганизмов независимо от того, в каком состоянии они находятся – активном, латентном или даже мертвом. В нашем исследовании нам придется не раз к этому возвращаться, так что давайте разберемся более детально в устройстве этого «конвейера».

Все начинается с проб. Когда они доставлены в лабораторию, каждая проба помещается в небольшую пробирку с каплей жидкости. В качестве проб подойдет все, что может содержать клетки или ДНК: образцы пыли, помета животных или воды. Жидкость в пробирке содержит мыло, белки, а еще крохотные стеклянные шарики, с помощью которых клетки «разбиваются» (примерно так, как разбивают яичную скорлупу), после чего из них можно извлечь ДНК, где хранится генетическая информация бактерий. Пробирки запечатывают, нагревают, встряхивают и центрифугируют. При центрифугировании тяжелые стеклянные шарики вместе с «обломками» клеток опускаются на дно, а драгоценные нити ДНК, будучи менее плотными, поднимаются к поверхности. Оттуда их уже легко снять, как снимают пенку или вытаскивают дохлую муху из бассейна[33]. Все эти операции в общем довольно просты, их могут выполнить даже сонные студенты на лабораторном практикуме, и даже если они пропустили мимо ушей большую часть инструктажа.

Чтобы идентифицировать разнообразные организмы на основе «извлеченной» из их клеток ДНК, нам нужно прочитать эту ДНК. Ученые называют этот процесс секвенированием. Вот это уже довольно сложная штука. Микроскоп увеличивает размеры наблюдаемого объекта, чтобы сделать его доступным для изучения, а вот при секвенировании нужно сначала максимально увеличить количество ДНК, чтобы понять невидимую информацию, которую она содержит. Только в этом случае можно считать «буквы» генетического алфавита – нуклеотиды, из которых ДНК и состоит. У всех организмов, кроме некоторых вирусов, ДНК представлена двумя взаимодополняющими цепочками, соединенными друг с другом чем-то вроде молекулярной застежки-молнии. Довольно давно ученые догадались, что если бережно расстегнуть эту «молнию», то каждая из получившихся цепочек может быть скопирована, и это можно повторять раз за разом, пока у нас не окажется достаточно ДНК, чтобы приняться за ее расшифровку. Расстегнуть застежку можно путем нагрева, и это не очень сложно. А вот для копирования отдельных цепочек необходимо участие белка, называемого полимеразой, который используется для копирования ДНК всеми клетками, включая человеческие. Итак, требовалось разъединить двойную цепь ДНК, добавить немного полимеразы, а также праймер (небольшой участок ДНК, который указывает полимеразе, какой именно отрезок ДНК, или ген, нужно копировать) и некоторые нуклеотиды. Проблема состояла в том, что при таких высоких температурах, при которых происходит расщепление двухцепочечной ДНК, полимераза разрушается. Один из громоздких, дорогостоящих и трудоемких способов решения проблемы состоял в том, чтобы добавлять свежую полимеразу и праймеры после каждого цикла нагревания. Этот способ работал, но мучительно медленно, так медленно, что большинство микробиологов предпочитали сосредоточиться на изучении тех видов, которые удается культивировать, и попросту игнорировали все неизвестные и некультивируемые в то время формы.

Но однажды решение было найдено. И этим решением был Thermus aquaticus, полимераза которого дееспособна при высоких температурах. И более того, именно в таких условиях она работает наиболее эффективно. Это было как раз то, что нужно. Через несколько лет после того, как Брок открыл Thermus aquaticus, генетики поняли, что если полимеразу этого вида (сокращенно Taq) добавить к ДНК при высокой температуре, то процесс копирования пойдет гораздо быстрее. Процесс копирования ДНК с помощью термоустойчивых полимераз, называемый полимеразно-цепной реакцией (ПЦР), может показаться второстепенным для науки. Однако практически все генетические тесты, проводимые в сегодняшнем мире, от установления отцовства до поисков бактерий в образцах пыли, основаны на ПЦР. Так бактерии, обнаруженные в горячих источниках и бытовых бойлерах, те самые, что заставили нас заняться поисками невидимой жизни в наших домах, стали источником белков, необходимых для того, чтобы вести эти поиски на современном научном уровне[34].

А вот какие именно гены копируют с помощью ПЦР ученые, лаборанты или врачи и как они потом расшифровывают полученные копии ДНК, зависит уже от цели конкретного исследования и от используемой технологии. В случае если нам нужно идентифицировать все виды бактерий, представленные в отдельно взятой пробе, обычно используют ген 16S рРНК. Он так важен для жизнедеятельности бактерий и архей, что за 4 млрд лет эволюции остался почти неизменным. Именно поэтому ученые так полагаются на этот ген, который есть у всех без исключения известных видов архей и бактерий. От вида к виду ген отличается достаточно для того, чтобы идентифицировать отдельные виды, но не настолько, чтобы его не распознать. А что касается методов, используемых для декодирования множества копий этого гена, то они весьма разнообразны. Некоторые основаны на добавлении маркированных нуклеотидов (тех самых букв генетического алфавита) в пробы, ДНК которых планируется скопировать. Маркируются они особыми веществами, которые может считать машина для секвенирования, или секвенаторы. Это устройство начинает работу со считывания праймера, которым открывается нуклеотидная цепочка, а потом считывает одну за другой все последующие «буквы». Это повторяется с каждой копией ДНК в пробе, хотя там их могут быть миллиарды, и в результате формируются огромные файлы с данными, в которых записаны расшифровки всех копий ДНК. Затем эти расшифровки объединяются в группы на основе их сходства и уже тогда считанные последовательности нуклеотидов каждой группы сравниваются с последовательностями уже известных видов, полученными ранее другими исследователями[35]. Конкретные детали этого процесса постоянно меняются, но одно остается неизменным: с каждым годом секвенирование становится все дешевле и проще. Не за горами времена, когда появятся портативные секвенаторы. (На самом деле такие уже существуют, но делают много ошибок при чтении ДНК. Со временем они станут лучше.)

Итак, в наши дни, главным образом благодаря Thermus aquaticus, стало возможным взять пробу и пропустить ее через «конвейер секвенирования», чтобы идентифицировать все виды микробов, что в ней содержатся, неважно, живые они или мертвые. Для этого не нужно ни рассматривать пробу в микроскоп, ни выращивать культуры входящих в нее видов. Биологи могут распознавать формы жизни, представленные в почве, морской воде, облаках, фекалиях и вообще где угодно. И не только культивируемые виды микробов, но и множество иных, которых пока не умеют выращивать в лаборатории. В мои студенческие годы такая возможность казалась несбыточной, да просто невообразимой. Теперь это обычное дело[36]. Лет десять тому назад я со своими коллегами задумал использовать эту методику для изучения жизни в домах. К тому времени уже стало возможным и вполне доступным взять пробу пыли с дверной рамы, каплю воды из-под крана или даже кусок ткани из одежного шкафа и идентифицировать почти все виды, присутствующие в образце путем расшифровки ДНК. Левенгук имел в своем распоряжении всего лишь увеличительное стекло для изучения окружающей жизни, а мы пропускаем ее через «конвейер секвенирования». На старте этого предприятия мы не могли даже предположить, что нам удастся обнаружить. А результаты оказались поразительными, причем не только по количеству найденных видов, но и по числу тех из них, что ранее не были известны.

вернуться

32

Это называется «секвенирование с высокой пропускной способностью» – красивый термин, обозначающий, что с помощью такого метода можно делать несколько дел разом, а именно одновременно секвенировать гены большого числа особей. Это напоминает «Макдоналдс», где можно быстро накормить сразу много людей. А что касается «секвенирования нового поколения» (next generation sequencing), то технологии развиваются настолько быстро, что методика next generation уже давно выглядит весьма скромно по сравнению с «самым-самым новым поколением» (и это было неизбежно, о чем не подумали те, кто вводил термин «секвенирование нового поколения»).

вернуться

33

На самом деле нужны некоторые дополнительные действия, чтобы удалить из пробы все, что не является ДНК. Но я описываю процедуру в самых общих словах.

вернуться

34

Со временем ученые – последователи Брока и его коллег и современников открыли еще более термофильных, даже гипертермофильных, микробов, а вместе с ними и целую библиотеку их ферментов, каждый из которых обладает особыми способностями. Например, у Pyrococcus furiosus была идентифицирована полимераза, которая работает подобно Taq, но сохраняет стабильность при более высоких температурах.

вернуться

35

При стандартном секвенировании на выходе мы не получаем списка идентифицированных организмов с их научными названиями. Вместо этого мы имеем дело с перечнем форм, сгруппированных по их родам, например Thermus 1, Thermus 2 и т. д. Под этими обозначениями скрываются отдельные секвенции, объединенные под одним родовым названием по принципу схожести последовательностей их ДНК. Понимая, что такие сущности не являются «полноценными» видами, микробиологи называют их ОТЕ (операциональными таксономическими единицами). Систематика микроорганизмов до сих пор находится в довольно запутанном состоянии, поэтому использование ОТЕ хотя и не самый совершенный способ классификации, но позволяет нам двигаться вперед, не дожидаясь, пока будет достигнут консенсус между традиционными и новыми подходами к классификации живых организмов.

вернуться

36

Не так давно Регина Уилпишески применила эту технологию к поиску неизвестных термофильных бактерий, которые могут населять водонагреватели вместе с Thermus scotoductus. Ей удалось выявить с полдюжины видов бактерий, которые обычно обнаруживаются в горячих источниках. Некоторые из них относятся к некультивируемым, и тем не менее их удалось обнаружить.

7
{"b":"701404","o":1}