147. Kirschbaum, C., Kudielka, B. M., Gaab, J. et al. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosomatic Medicine, 61(2), 154–162. doi:10.1097/00006842-199903000-00006.
148. Gaffey, A. E., Wirth, M. M., Hoks, R. M. et al. (2014). Circulating cortisol levels after exogenous cortisol administration are higher in women using hormonal contraceptives: Data from two preliminary studies. Stress, 17(4), 314–320. doi:10.3109/10253890.2014.919447.
149. Kirschbaum, C., Kudielka, B. M., Gaab, J. et al. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosomatic Medicine, 61(2), 154–162. doi:10.1097/00006842-199903000-00006.
150. Jacobs, A. J., Odom, M. J., Word, R. A., & Carr, B. R. (1989). Effect of oral contraceptives on adrenocorticotropin and growth hormone secretion following CRH and GHRH administration. Contraception, 40(6), 691–699. doi:10.1016/0010-7824(89)90072-3.
151. Simunkovа, K., Stаrka, L., Hill, M. et al. (2008). Comparison of total and salivary cortisol in a low-dose ACTH (Synacthen) test: Influence of three-month oral contraceptives administration to healthy women. Physiological Research, 57, S193–S199.
152. Hertel, J., König, J., Homuth, G. et al. (2017). Evidence for stress-like alterations in the HPA-axis in women taking oral contraceptives. Scientific Reports, 7(1), 1–14. doi:10.1038/s41598-017-13927-7.
153. Hertel, J., König, J., Homuth, G. et al. (2017). Evidence for stress-like alterations in the HPA-axis in women taking oral contraceptives. Scientific Reports, 7(1), 1–14. doi:10.1038/s41598-017-13927-7.
154. Conrad, C. D. (2008). Chronic stress-induced hippocampal vulnerability: The glucocorticoid vulnerability hypothesis. Reviews in the Neurosciences, 19(6). doi:10.1515/revneuro.2008.19.6.395; Magarinos, A. M., Verdugo, J. M., & McEwen, B. S. (1997). Chronic stress alters synaptic terminal structure in hippocampus. Proceedings of the National Academy of Sciences, 94(25), 14002–14008. doi:10.1073/pnas.94.25.14002.
155. Klengel, T., Mehta, D., Anacker, C. et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nature Neuroscience, 16, 33–41. doi:10.1038/nn.3275.
156. Hertel, J., König, J., Homuth, G. et al. (2017). Evidence for stress-like alterations in the HPA-axis in women taking oral contraceptives. Scientific Reports, 7(1), 1–14. doi:10.1038/s41598-017-13927-7.
157. Conrad, C. D. (2010). A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(5), 742–755. doi:10.1016/j.pnpbp.2009.11.003; Joëls, M., Karst, H., Krugers, H. J., & Lucassen, P. J. (2007). Chronic stress: Implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 28(2–3), 72–96. doi:10.1016/j.yfrne.2007.04.001; Mirescu, C., & Gould, E. (2006). Stress and adult neurogenesis. Hippocampus, 16(3), 233–238. doi:10.1002/hipo.20155; Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 6810–6818. doi:10.1523/JNEUROSCI.22-15-06810.2002.
158. Anand, K. S., & Dhikav, V. (2012). Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, 15(4), 239–246. http://doi.org/10.4103/0972-2327.104323.
159. Hertel, J., König, J., Homuth, G. et al. (2017). Evidence for stress-like alterations in the HPA-axis in women taking oral contraceptives. Scientific Reports, 7(1), 1–14. doi:10.1038/s41598-017-13927-7; Gingnell, M., Engman, J., Frick, A. et al. (2013). Oral contraceptive use changes brain activity and mood in women with previous negative affect on the pill: A double-blinded, placebo-controlled randomized trial of a levonorgestrel-containing combined oral contraceptive. Psychoneuroendocrinology, 38(7), 1133–1144. doi:10.1016/j.psyneuen.2012.11.006; Petersen, N., & Cahill, L. (2015). Amygdala reactivity to negative stimuli is influenced by oral contraceptive use. Social Cognitive and Affective Neuroscience, 10(9), 1266–1272. doi:10.1093/scan/nsv010.
160. West, M., Coleman, P., Flood, D., & Troncoso, J. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet, 344(8925), 769–772. doi:10.1016/s0140-6736(94)92338-8.
161. Kempermann, G., Krebs, J., & Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21(3), 290–295. doi:10.1097/yco.0b013e3282fad375; Lagace, D. C., Donovan, M. H., Decarolis, N. A. et al. (2010). Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4436–4441. doi:10.1073/pnas.0910072107; Pittenger, C., & Duman, R. S. (2008). Stress, depression and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33(1), 88–109. doi:10.1038/sj.npp.1301574.
162. Bradshaw, H. K. & Hill, S.E. (working paper). Oral contraceptive use predicts decreased performance on cognitively taxing tasks.
163. Grams, A. E., Gempt, J., Stahl, A., & Förschler, A. (2010). Female pituitary size in relation to age and hormonal factors. Neuroendocrinology, 92(2), 128–132. doi:10.1159/000314196; Pletzer, B., Kronbichler, M., Aichhorn, M. et al. (2010). Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Research, 1348, 55–62. doi:10.1016/j.brainres.2010.06.019; Pletzer, B., Kronbichler, M., & Kerschbaum, H. (2015). Differential effects of androgenic and anti-androgenic progestins on fusiform and frontal gray matter volume and face recognition performance. Brain Research, 1596, 108–115. doi:10.1016/j.brainres.2014.11.025; Petersen, N., & Cahill, L. (2015). Amygdala reactivity to negative stimuli is influenced by oral contraceptive use. Social Cognitive and Affective Neuroscience, 10(9), 1266–1272. doi:10.1093/scan/nsv010.