Литмир - Электронная Библиотека

Электромагнитное взаимодействие характеризуется как взаимодействие, в основе которого лежит связь с электромагнитным полем. Оно характерно для всех элементарных частиц, за исключением нейтрино, антинейтрино и фотона. Электромагнитное взаимодействие, в частности, ответственно за существование атомов и молекул, обусловливая взаимодействие в них положительно заряженных ядер и отрицательно заряженных электронов.

Слабое взаимодействие – наиболее медленное из всех взаимодействий, протекающих в микромире. Оно ответственно за взаимодействие частиц, происходящих с участием нейтрино или антинейтрино (например, -распад, -распад), а также за безнейтринные процессы распада, характеризующиеся довольно большим временем жизни распадающейся частицы (10–10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц оно пренебрежимо мало и, по-видимому, в процессах микромира несущественно.

Сильное взаимодействие примерно в 100 раз превосходит электромагнитное и в 1014 раз – слабое. Чем сильнее взаимодействие, тем с большей интенсивностью протекают процессы. Так, время жизни частиц, называемых резонансами, распад которых описывается сильным взаимодействием, составляет примерно 10–23 с; время жизни 0-мезона, за распад которого ответственно электромагнитное взаимодействие, составляет 10–16 с; для распадов, за которые ответственно слабое взаимодействие, характерны времена жизни 10–10—10–8 с. Как сильное, так и слабое взаимодействия – короткодействующие. Радиус действия сильного взаимодействия составляет примерно 10–15 м, слабого – не превышает 10–19 м. Радиус действия электромагнитного взаимодействия практически не ограничен.

Элементарные частицы принято делить на три группы:

1) фотоны; эта группа состоит всего лишь из одной частицы – фотона – кванта электромагнитного излучения;

2) лептоны (от греч. «лептос» – легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептон – -лептон, или таон, с массой примерно 3487me, а также соответствующие им античастицы. Название лептонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

3) адроны (от греч. «адрос» – крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.

По современным представлениям, нейтрино и антинейтрино отличаются друг от друга одной из квантовых характеристик состояния элементарной частицы — спиральностью, определяемой как проекция спина частицы на направление ее движения (на импульс). Для объяснения экспериментальных данных предполагают, что у нейтрино спин s ориентирован антипараллельно импульсу р, т. е. направления р и s образуют левый винт и нейтрино обладает левой спиральностью (рис. 3 а). У антинейтрино направления р и s образуют правый винт, т. е. антинейтрино обладает правой спиральностью (рис. 3 б). Это свойство справедливо в равной мере как для электронного, так и для мюонного нейтрино (антинейтрино).

Физика гипотеза: субатомная планетология квантово энергетическая робототехника: физика роботехническая инженерия - _0.jpg

Рисунок 3

В табл. 1 элементарные частицы объединены в три группы: фотоны, лептоны и адроны. Элементарные частицы, отнесенные к каждой из этих групп, обладают общими свойствами и характеристиками, которые отличают их от частиц другой группы.

К группе фотонов относится единственная частица – фотон, который переносит электромагнитное взаимодействие. В электромагнитном взаимодействии участвуют в той или иной степени все частицы, как заряженные, так и нейтральные (кроме нейтрино).

К группе лептонов относятся электрон, мюон, таон, соответствующие им нейтрино, а также их античастицы. Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами, подчиняясь статистике Ферми – Дирака.

Поскольку лептоны в сильных взаимодействиях не участвуют, изотопический спин им не приписывается. Странность лептонов равна нулю.

Элементарным частицам, относящимся к труппе лептонов, приписывают так называемое лептонное число (лептонный заряд) L. Обычно принимают, что L=+1 для лептонов (е, , , e, , ), L=–1 для антилептонов (е+, +, +, , , ) и L=0 для всех остальных элементарных частиц. Введение L позволяет сформулировать закон сохрания лептонного числа: в замкнутой системе при всех без исключения процессах взаимопревращаемости элементарных частиц лептонное число сохраняется.

Теперь понятно, почему при распаде нейтральная частица названа антинейтрино, а при распаде – нейтрино. Taк как у электрона и нейтрино L= +1, а у позитрона и антинейтрино L= –1, то закон сохранения лептонного числа выполняется лишь при условии, что антинейтрино возникает вместе с электроном, а нейтрино – с позитроном.

Таблица 1

Физика гипотеза: субатомная планетология квантово энергетическая робототехника: физика роботехническая инженерия - _1.jpg

Основную часть элементарных частиц составляют адроны. К группе адронов относятся пионы, каоны, -мезон, нуклоны, гипероны, а также их античастицы (в таблице 1 приведены не все адроны).

Адронам приписывают барионное число (барионный заряд) В. Адроны с В=0 образуют подгруппу мезонов (пионы, каоны, -мезон), а адроны с В= +1 образуют подгруппу барионов (от греч. «барис» – тяжелый; сюда относятся нуклоны и гипероны). Для лептонов и фотона В=0. Если принять для барионов В=+1, для антибарионов (антинуклоны, автигипероны) В=–1, а для всех остальных частиц В=0, то можно сформулировать закон сохранения барионного числа: в замкнутой системе при всех процессах взаимопревращаемости элементарных частиц барионное число сохраняется.

Из закона сохранения барионного числа следует, что при распаде бариона наряду с другими частицами обязательно образуется барион. Примерами сохранения барионного числа являются реакции (273.1)—(273.5). Барионы имеют спин, равный ½ (только спин -гиперона равен 3/2), т. е. барионы, как и лептоны, являются фермионами.

Странность S для различных частиц подгруппы барионов имеет разные значения (см. табл. 1).

Мезоны имеют спин, равный нулю, и, следовательно, являются бозонами, подчиняясь статистике Бозе – Эйнштейна. Для мезонов лептонные и барионные числа равны нулю. Из подгруппы мезонов только каоны обладают S=+1, а пионы и -мезоны имеют нулевую странность.

Подчеркнем еще раз, что для процессов взаимопревращаемости элементарных частиц, обусловленных сильными взаимодействиями, выполняются все законы сохранения (энергии, импульса, момента импульса, зарядов (электрического, лептонного и барионного), изоспина, странности и четности). В процессах, обусловленных слабыми взаимодействиями, не сохраняются только изоспин, странность и четность.

В последние годы увеличение числа элементарных частиц происходит в основном вследствие расширения группы адронов.

Поэтому развитие работ по их классификации все время сопровождалось поисками новых, более фундаментальных частиц, которые могли бы служить базисом для построения всех адронов. Гипотеза о существовании таких частиц, названных кварками, была высказана независимо друг от друга (1964) австрийским физиком Дж. Цвейгом (р. 1937) и Гелл-Манном.

2
{"b":"684182","o":1}