Представляется, что в первый период развития темпы должны быть еще более высокими - доходить до 15 процентов. Это означает, что через 20-25 лет развитие атомной энергетики может несколько замедляться и время удвоения мощностей увеличится примерно на 3 года, то есть составит около
10 лет.
Именно эта величина и нужна для того, чтобы определить требования к темпам расширенного воспроизводства в реакторах-размножителях ядерного топлива. Если сегодня в него заложена, например, тысяча килограммов, то через 10 лет он должен будет наработать дополнительно еще тысячу килограммов. Этого нового горючего как раз хватит для того, чтобы запустить через 10 лет еще один реактор, чем и удвоится мощность. Если исходить из сказанного, время удвоения загрузки быстрого реактора должно составлять 10 лет. В действительности требования, предъявляемые к реакторам, по скорости размножения горючего более жесткие и время удвоения загрузки делящегося ядерного горючего должно быть существенно менее 10 лет. Чем это вызвано?
Сейчас около 20 процентов всего добываемого топлива идет на выработку электроэнергии. Треть его уходит на производство коммунального тепла и пара, используемого в различных отраслях промышленности. Несколько менее четвертой части топлива расходуется в металлургии, химии, нефтепереработке и других отраслях промышленности. Транспорт - авиация, автомобили, тепловозы, речные и морские суда - потребляет почти столько же. Через несколько десятков лет эти пропорции, конечно, изменятся. Насколько?
Наиболее очевиден рост электроэнергетики, которая в прошедшие годы развивалась вдвое быстрее, чем вся энергетика. В настоящее время этот процесс несколько замедлился, но тем не менее доля электроэнергии в общем энергетическом балансе неуклонно растет. Можно ожидать, что через несколько десятков лет ее доля достигнет, скажем, 40 процентов.
Подавляющее большинство работающих и строящихся атомных энергетических установок предназначено для выработки именно электроэнергии. Не являются исключением и реакторы-размножители на быстрых нейтронах: их также создают с той же целью. Если АЭС с реакторами-размножителями заняли бы всю электроэнергетику, то есть вытеснили бы из нее электростанции, пользующиеся другими видами топлива, это было бы уже довольно удовлетворительным решением энергетической проблемы. Около 40 процентов энергетики обеспечивалось бы атомной. Впрочем, это невозможно. Вопервых, и через 30, и через 40 лет еще будут существо вать гидростанции, а в районах залегания углей продол жат свою работу теплоэлектростанции на этом топливе. Во-втооы\, ЛЭС с реакторами-размножителями могут быть испоц ованы только в базисном режиме работы. Вот что это означает.
Потребление электроэнергии в промышленности и быту очень неолрномерно. Зимой она расходуется в большем объеме, нежели в тепчое время года. Эта неравномерность характерна и для недельного периода: в субботу и воскресенье потребность в электроэнергии резко падает. Даже в течение суток происходит сильное колебание потребления, отражающееся и на производстве электроэнергии. Существуют так называемые утренние и вечерние пики потребления, как и ночные провалы, когда электроэнергии нужно очень мало. Значит, электростанции в соответствии с приведенными фактами вынуждены вырабатывать электроэнергию неравномерно, а часть из них в периоды малого потребления и вообще останавливаться. Если провести анализ баланса рабочего времени всех электростанций, то окажется, что в среднем они простаивают за год около полугода.
Исходя из этого, разумно строить станции различных типов так, чтобы одни из них работали весь год на постоянной, максимально допустимой для них мощности, - про такие электростанции говорят, что они работают в базисном режиме; другим рекомендовать регулярный режим, при котором мощность то поднимается, то снижается; а третьи в основном простаивают, лишь изредка (утром и вечером) поднимается до максимальной их мощность.
Конечно, бессмысленно заставлять работать в таком режиме АЭС с реактором-размножителем, созданным для быстрейшего создания нового ядерного горючего.
Разве можно ему простаивать! Несколько лучше работа в регулируемом режиме. Но самое идеальное - базисный режим. Постоянная работа реактора на предельной мощности позволит создать максимальное количество горючего за минимально возможное время.
Очевидны и минусы такого подхода. Не более половины вырабатываемой электроэнергии могут производить АЭС с реакторами-размножителями. Это означает, что с их помощью возможно обеспечить примерно одну пятую всей потребности в энергии. Но этого мало.
Надо найти и другие пути, которые привели бы к увеличению доли атомной энергетики. Такие пути есть. Скажем, в очень многих отраслях промышленности и в коммунальном хозяйстве в качестве источника энергии могут служить реакторы не на быстрых, а на тепловых нейтронах. Такие реакторы более дешевы, гибки и неприхотливы в работе. Они, правда, не вырабатывают избыточного горючего, а потребляют поступающее извне. Но горючее это можно взять от реакторов-размножителей.
Конечно, при этом возрастет нагрузка на эти реакторы:
им придется нарабатывать ядерного горючего не только
Для себе подобных, но и для реакторов, работающих на Тепловых нейтронах. Но если каждый реактор-размножитель на быстрых нейтронах обеспечит своей продукцией реактор такой же мощности на тепловых нейтронах, то вклад атомной энергетики в энергетику нашей страны сможет в перспективе подняться до 50 процентов или около того. Однако тогда время удвоения загрузки в реакторах-размножителях придется сократить с 10 лет до 7, а то и до 5 лет. А для этого надо интенсифицировать процесс размножения горючего.
Кто же прав?
Подведем итог. Итак, чтобы решить топливную проблему страны, самой атомной энергетике необходимы реакторы-размножители с малым- временем удвоения загрузки ядерного горючего. Казалось бы, ясная и актуальная задача. По крайней мере такой она видится, исходя из сказанного выше.
Однако не все зарубежные и даже советские атомники разделяют такую точку зрения. В 1968 году в Минске состоялась международная конференция специалистов по реакторам-размножителям на быстрых нейтронах. Ученые рассказывали о результатах экспериментальных и расчетных работ по теплофизике, нейтронной физике реакторов, об идеях и новых проектах. Все они отлично понимали друг друга, пока не встал вопрос о том, какое время удвоения загрузки должно быть в реакторах-размножителях?
- Вполне очевидно, что оно должно быть примерно 15-20 лет, - говорили немецкие и американские физики.
- Если не удастся уменьшить время удвоения до 5-7 лет, то атомная энергетика не сможет оправдать возложенных на нее надежд, - заявляли советские специалисты.
- Но ведь создание реактора с таким малым временем удвоения сложнейшая техническая задача.
Кроме того, если такой реактор и удастся создать, то он будет очень дорого стоить, - парировали зарубежные ученые.
Конечно, это так, - отвечали ученые Советского Союза, - но ведь реактор с большим временем удвое
ния загрузки не может решить топливной проблемы самой ядерной энергетики.
- Возможно, но зато он будет более дешевым и экономичным, чем реакторы на тепловых нейтронах, - стояли на своем зарубежные ученые.
Примерно в таком духе шла дискуссия о путях развития быстрых реакторов. Ее корни в проблемах, которые нужно решить, чтобы существенным образом интенсифицировать процесс наработки нового горючего.
Одно только перечисление этих проблем заняло бы много времени. Поэтому лучше остановиться на некоторых из них.
Для быстрейшего получения из каждого килограмма загруженного в реактор топлива, скажем, полутора килограммов нового, очевидно, нужно, чтобы этот килограмм как можно скорее сгорел. А это означает, что должна быть увеличена мощность каждого тепловыделяющего элемента, в котором и заключено горючее.
С увеличением же мощности повышается и его температура. А это уже проблема. Ведь нужны материалы, способные длительное время работать при высокой температуре в 700-800 градусов в условиях нейтронного облучения и больших механических нагрузок (давление газов внутри твэла будет достигать нескольких десятков атмосфер).