ОТВЕТ • Второй шар получает от первого максимальную энергию, когда его масса равна массе первого шара. Если оба шара идеально упругие, почти вся энергия при столкновении переходит ко второму шару, а значит, его скорость будет такой же, какой была до соударения у первого шара, а тот, следовательно, остановится.
Второй шар приобретет максимальную скорость в том случае, когда его масса много меньше массы первого шара. Пусть V – скорость первого шара (рис. 1.15б). Если отношение масс очень велико и соударение абсолютно упругое, второй шар может приобрести скорость 2V (рис. 1.15в). Это может показаться неправильным, но на секунду попробуем посмотреть на происходящее с точки зрения первого шара. Нам кажется, что второй шар движется на нас со скоростью V (рис. 1.15 г), упруго отскакивает и улетает со скоростью V (рис. 1.15д). Теперь вернемся в нашу обычную систему отсчета. Второй шар улетает от первого с относительной скоростью V. А что делает первый шар? Поскольку второй шар имеет такую маленькую массу, соударение не сильно влияет на скорость первого шара. И она по-прежнему останется равной V. Таким образом, скорость второго шара должна быть равна V + V = 2V. Если происходит цепная реакция таких соударений, то скорость, сообщенная каждым столкновением, примерно удваивается по сравнению с предыдущим столкновением.
Если массы крайних шаров заданы и мы хотим передать максимальную энергию меньшему шару, нужно так выбрать массу каждого промежуточного шара, чтобы она была равна среднему геометрическому масс шаров, находящихся по разные стороны от него. (Среднее геометрическое двух масс – это корень квадратный из произведения этих масс.) При другом выборе масс промежуточных шаров тоже можно получить выигрыш в передаваемой энергии, но не такой большой.
Этот вывод применим и к удару мячом по голове. Если подставить руку на пути летящего мяча, это только увеличит передаваемую энергию, поскольку рука как раз имеет массу, среднюю между массами головы и мяча. И все же подставить руку стоит, поскольку она шире мяча и сила удара по голове распределится на большую площадь.
Теперь рассмотрим ситуацию с игрушкой из нескольких шариков. Фокусы с игрушкой с подвешенными рядышком шариками-маятниками обычно описывают, рассматривая импульс и кинетическую энергию шариков. Единственная возможность для этих величин остаться постоянными при серии соударений – чтобы последний шарик закончил процесс, получив всю первоначальную кинетическую энергию и импульс. Таким образом, в конце он двигается один. Объяснение настолько просто, что сбивает с толку, ведь реальное движение промежуточных шариков может быть очень сложным.
В опыте, в котором первый шар ударяет второй шар под углом, важно отношение расстояния между шариками D к радиусу шарика R. Если D/R меньше 4, нарушение строя после серии соударений исчезает, поскольку точки соударения постепенно сдвигаются к плоскости, в которой расположены шары, и удары становятся все менее косыми. Если же D/R больше 4, нарушение строя будет нарастать, поскольку точки соударений будут сдвигаться по искривленной поверхности шара дальше от плоскости, в которой расположены шары.
1.43. Падение нескольких мячей
Допустим, мы роняем два мяча примерно с высоты метра, причем вверху располагается бейсбольный, а внизу – баскетбольный мяч (рис. 1.16а). Хотя при падении по отдельности с такой высоты ни один из мячей не отскочит от пола на заметную высоту, при падении пары мячей получается неожиданный результат. Баскетбольный мяч остается лежать неподвижно на полу, а бейсбольный подпрыгивает сильно, иногда даже к потолку (рис. 1.16б). При этом высота, на которую подпрыгнет бейсбольный мяч, всегда больше, чем сумма высот, на которые отскочили бы по отдельности бейсбольный и баскетбольный мячи. (Будьте осторожны. Если удар придется не по центру баскетбольного мяча, бейсбольный мяч может отлететь в сторону, а при такой скорости он может сильно ударить.) Если повторить опыт, но на бейсбольный мяч сверху положить еще один – маленький упругий мяч, тот взлетит как ракета и может подпрыгнуть даже выше, чем бейсбольный мяч, хотя и получит меньше энергии.

Рис. 1.16 / Задача 1.43. а) До и б) после того, как баскетбольный и бейсбольный мячи вместе брошены на твердый пол. в) До и г) после столкновения очень большого и очень маленького мячей. д) До и е) после столкновения с точки зрения большого мяча.
В теории, если мячи правильно подобраны, верхний мяч из пары брошенных может подпрыгнуть на высоту, в 9 раз большую, чем высота, с которой они были сброшены. С тремя мячами, опять же правильно подобранными и, конечно, при идеальных условиях, верхний мяч может подпрыгнуть на высоту, в 49 раз превышающую высоту, с которой они сброшены. Можно экспериментировать со множеством различных мячей, например с мячиками для пинг-понга, мячами-попрыгунчиками (суперупругие мячики) или теннисными мячами. Как нужно подбирать мячи в группе, чтобы верхний мяч подпрыгнул на большую высоту, и почему он прыгает так высоко?
ОТВЕТ • Когда падает группа из двух мячей, нижний отскакивает от пола, но сталкивается с верхним, который все еще продолжает падать. При соударении энергия передается от нижнего мяча к верхнему, и он приобретает скорость, направленную вверх. Если задаться целью передать максимальную энергию верхнему мячу, нужно, чтобы нижний мяч остановился. Если мячи упругие, наибольшее количество энергии передается, когда масса нижнего мяча в три-четыре раза больше массы верхнего. Примерно такое соотношение у баскетбольного и бейсбольного мячей.
Если же стремиться к тому, чтобы верхний мяч подпрыгнул как можно выше, его нужно выбирать как можно более легким по сравнению с нижним. Высота, на которую подпрыгнет верхний мяч, пропорциональна квадрату скорости, полученной им при столкновении. Если масса верхнего мяча много меньше массы нижнего, верхний мяч получит большую скорость, и сможет подскочить на высоту, в 9 раз большую, чем высота, с которой он падал.
Чтобы понять результат, рассмотрим скорости мячей перед самым столкновением. Верхний мяч падает со скоростью V, а нижний летит вверх с такой же скоростью V (рис. 1.16в). Если соударение абсолютно упругое, верхний мяч приобретет скорость 3V (рис. 1.16 г). Это может показаться неверным, но представьте на мгновение, что вы – первый мяч, и посмотрите на ситуацию с его точки зрения: вы увидите, что верхний мяч приближается к вам со скоростью 2V (рис. 1.16д), упруго отражается от вас и летит прочь со скоростью 2V (рис. 1.16е). А теперь вернитесь к своей собственной точке зрения. Верхний мяч летит прочь от нижнего с относительной скоростью 2V. А что делает нижний мяч? Поскольку масса верхнего мяча мала, соударение сколько-нибудь существенно не изменит скорость тяжелого нижнего мяча, и она по-прежнему будет примерно равна V, так что скорость верхнего мяча будет равна V+2V=3V.
Если рассматривать падение группы мячей, нужно их расположить так, чтобы их массы убывали снизу вверх. Когда нижний мяч отскакивает от пола, он передает часть энергии второму мячу. Как только второй мяч полетит вверх, он ударит летящий вниз третий мяч и передаст часть своей энергии ему. Теперь третий мяч полетит вверх, ударит четвертый мяч и так далее. Если сделать цепочку мячей достаточно большой, теоретически можно верхний мяч запустить на космическую орбиту.
1.44. Короткая история. Разорительный фокус
Когда Джон Макбрайд был студентом в Хьюстоне, он вместе с еще двумя студентами экспериментировал с мячами, отправляя пару мячей – софтбольный и баскетбольный – в свободное падение с высоты третьего этажа (из перехода между двумя общежитиями). Каждый раз при падении баскетбольный мяч застывал на земле, а софтбольный – взмывал высоко над их головами, не меньше чем на 10 м над землей. Фокус имел большой успех, но однажды при очередной попытке соударение мячей произошло не по центру, а под углом, и софтбольный мяч влетел в окно кабинета завхоза, разбив все стекла в комнате. Ремонт обошелся в 250 долларов, но последствия могли бы быть гораздо печальнее, а наказание – более суровым, если бы в комнате в этот момент оказался сам завхоз.