Поначалу Дирак не очень понимал, как именно интерпретировать свое творение, поскольку оно содержало абсурдное предсказание о том, что электрон может обладать отрицательной энергией. Однако эта математика вполне подходила для случая, когда обсуждаемая частица обладает позитивным электрическим зарядом и может обладать положительной энергией. После размышлений, продолжавшихся несколько дней, Дирак в 1931 году выдвинул предположение о существовании «антиэлектрона» с позитивным зарядом68, а менее чем через год позитрон оставил свой первый след в диффузионной камере. Андерсон и Виктор Гесс разделили в 1936 году Нобелевскую премию в области физики.
В 1927 году Дирак внес еще один теоретический вклад, позволивший развить идею нейтрино. Он применил новую квантовую теорию к случаю взаимодействия атома с электромагнитным полем, предложив, таким образом, первую теорию «квантовой электродинамики»69. Теперь, в классическом виде, свет должен был представлять собой волну в электромагнитном поле; однако в начале столетия Эйнштейн уже указал, что он порой может вести себя как частица, то есть как фотон. Демонстрируя в своей новой теории, что фотон может спонтанно появляться и исчезать в пустоте, Дирак дал понять, что то же самое могут делать и другие элементарные частицы. А когда нейтрону Чедвика удалось, по сути дела, «изгнать» электрон из ядра, некоторые ученые начали подозревать, что электрон, излучаемый в ходе бета-распада, может возникать спонтанным образом70. Те из них, кто отнесся к идее нейтрино серьезно, начали подозревать, что и оно способно на это. Позднее Паули вспоминал, что «ясность в целом» пришла к нему и другим на седьмой Сольвеевской конференции, которая прошла в Брюсселе в октябре 1933 года71.
Поскольку новые открытия следовали одно за другим, организаторам конференции пришлось несколько раз на ходу менять повестку дня. На конференции присутствовали многие важные действующие лица эпической саги о бета-лучах – такие как Эрнест Резерфорд, Лиза Мейтнер, Джеймс Чедвик и Чарльз Драммонд Эллис72. Бор и Паули приехали в сопровождении своих коллег-теоретиков – Шрёдингера, Гейзенберга и Дирака, – и к ним присоединились две восходящие звезды, Энрико Ферми и Рудольф Пайерлс (в свое время Пайерлс учился вместе с Паули).
Здесь же была и Мари Кюри – «королева радиоактивности» (в следующем году она умерла от лейкемии, вызванной облучением), а также ее дочь и зять, Ирен и Фредерик Жолио-Кюри, – оба супруга к тому времени уже сделали собственную успешную научную карьеру. Им удалось обнаружить нейтрон и позитрон в своих лабораториях еще до открытия этих частиц Чедвиком и Андерсоном, однако они так и не поняли, что именно им удалось открыть.
Удача начала поворачиваться лицом к Жолио-Кюри в Брюсселе, когда они представили первые проблески одного из самых примечательных открытий XX века – явления ядерного распада, «расщепления атома», которое через 13 лет обеспечит начинкой атомную бомбу. Они начали бомбардировать тонкие листы алюминия и бора альфа-частицами, иными словами – ядрами атома гелия, состоящего из двух протонов и двух нейтронов. В результате им удалось создать первые искусственные радиоактивные субстанции: нестабильные изотопы фосфора и углерода. Однако, как и во многих других случаях, супруги Жолио-Кюри к моменту конференции еще не до конца осознали, что им удалось создать эти изотопы, – и как раз обсуждения в Брюсселе позволили им прийти к полноценному открытию примерно тремя месяцами позже. Однако они представили свидетельства, крайне важные для открытия нейтрино: новую форму бета-распада, создававшую позитрон вместо электрона73. И теперь, когда Чедвик нашел для нейтрона четкое место в ядре, появилась возможность понять суть двух форм бета-распада, напоминающих две стороны одной и той же монеты.
Фосфор располагается на две позиции правее алюминия в периодической таблице элементов: в его ядре на два протона больше. Жолио-Кюри удалось заставить ядро атома алюминия принять оба протона из альфа-частицы. Созданный ими искусственный фосфор затем выпустил один позитрон и превратился в кремний, располагающийся в таблице между алюминием и фосфором. Теперь мы уже знаем, что при такой форме бета-распада протон заменяется нейтроном и, таким образом, в результате распада возникает элемент, находящийся на предыдущем месте в периодической таблице, – в прежнем процессе нейтрон менялся на протон и появлялся следующий элемент. Электрический заряд сохраняется в каждом из этих случаев, поскольку возникновение позитрона компенсирует исчезновение протона в процессе, использованном Жолио-Кюри, в то время как в изначальном процессе возникновение электрона компенсировало появление протона.
Следующий элемент ясности в идею Паули добавил Чарльз Драммонд Эллис. Можно сказать, что он забил последний гвоздь в гроб альтернативной гипотезы бета-распада, предложенной Нильсом Бором. Как мы помним, Бор предположил, что принцип сохранения энергии может не выдерживаться в отдельных случаях распада, однако работает в процессе в целом. Это предполагало, что высокие значения в спектре энергии бета-электронов будут встречаться редко, однако у спектра не будет четкой верхней границы. В ходе конференции Эллис и его ученик У. Дж. Хендерсон представили результаты, согласно которым спектр энергии все же имел верхнюю границу, причем именно там, где она ожидалась по итогам обсуждений энергии массы74. Это значило, что средняя энергия электронов должна была быть ниже этой границы, то есть энергия терялась даже в среднем — если только в процессе не участвовала хотя бы одна другая частица. Кое-кто утверждает даже, что в ходе этого эксперимента Эллис и Хендерсон открыли нейтрино, и по сегодняшним стандартам научного открытия с этим можно было бы согласиться. Однако Бор по-прежнему демонстрировал необычайное упорство и не сдавался еще три года75.
Сложив все эти новые открытия в одну картину, Паули понял, что обе формы бета-распада представляют собой еще одну проблему с точки зрения сохранения энергии. Он подумал о спине, который требовал излучения нейтрино: если вы помните, каждая частица, вовлеченная в любую из форм бета-распада, обладает полуцелым спином. К примеру, если в процессе Жолио-Кюри протон в нестабильном ядре атома фосфора меняется на нейтрон и происходит излучение одного лишь позитрона, возникает еще один полуцелый спин: два полуцелых спина могут вместе создать значение, равное 1 или 0, но не изначальное полуцелое значение.
Однако в случае, когда происходит также выброс нейтрино со значением спина, равным 1/2, спин сохраняется. Через много лет Паули писал76:
С учетом этой новой ситуации мое желание отложить публикацию представляется излишним… я отказался от своих идей в отношении нейтрино (как эта частица называется теперь) в ходе дискуссии на конференции77.
Крошечная частица еще не окончательно родилась, однако по прошествии трех лет можно было сказать, что она хотя бы была зачата. К тому времени и сознание ее первооткрывателя вновь обрело ясность.
* * *
Психотерапевтические сеансы Паули у молодой женщины-врача продолжались пять месяцев, «а затем в течение еще трех месяцев он работал над собой самостоятельно», пишет Юнг, «пунктуально отслеживая собственное бессознательное. В этом деле он был очень талантлив»78. В середине 1933 года, за несколько месяцев до Сольвеевской конференции, Паули приступил к терапии с самим Юнгом.
Через шесть месяцев после конференции Паули вступил во второй, более успешный брак, который сохранился до конца его жизни. Еще через несколько месяцев завершилась и его терапия, однако они с Юнгом сохранили дружеские отношения. По просьбе психолога Паули продолжал записывать свои яркие и примечательные сны – всего таких записей было сделано больше тысячи («они содержали совершенно сказочные серии архетипических образов», сообщает Юнг79). Эти сны легли в основу нескольких важнейших лекций и научных работ Юнга; при этом личность Паули не раскрывалась и пациент в этих рассказах Юнга всегда оставался анонимным80. То, что этим пациентом Юнга был именно Паули, стало известно лишь через пару десятилетий после смерти их обоих.