Использование крайне низких температур позволило Розенбауму настолько замедлить атомы этих странных субстанций, что стало возможным детальное наблюдение и выявление их квантово-механической сущности. При температуре, близкой к абсолютному нулю, когда атомы практически неподвижны, вещества начинают приобретать новые общие свойства. Розенбаум пришел в восторг от недавнего открытия, что неупорядоченные при комнатной температуре системы демонстрируют постоянство, подвергшись охлаждению. Разрозненные атомы неожиданно начинают действовать согласованно.
Исследования группового взаимодействия молекул в различных обстоятельствах позволяют многое узнать о внутренней природе материи. Лаборатория Розенбаума показалась мне самым подходящим местом для начала моего собственного путешествия к открытиям. Там, при самых низких температурах, где все происходит в замедленном темпе, может открыться истинная природа базовых составляющих вселенной. Меня интересовало, как компоненты нашей физической вселенной, которые мы считаем абсолютно стабильными, могут подвергаться фундаментальным изменениям. Я также хотела узнать, возможно ли показать, что квантовые явления, такие как эффект наблюдателя, имеют место за пределами субатомного мира, в мире повседневном. Открытия Розенбаума, сделанные им с помощью холодильной установки, могли многое прояснить в отношении того, как всякий объект или организм в физическом мире, который считается в классической физике неизменным и окончательным, подверженным только воздействиям грубых ньютоновских сил, может быть изменен энергией мысли.
Согласно второму закону термодинамики, все физические процессы во вселенной происходят лишь по пути убывания энергии. Мы бросаем камень в воду, и круги, вызванные им на поверхности, постепенно исчезают.
Чашка горячего кофе, оставленная на столе, постепенно остывает. Все неумолимо распадается, все движется в единственном направлении – от упорядоченности к неупорядоченности.
Но Розенбаум полагал, что этот процесс может быть обратимым. Последние открытия, касающиеся неупорядоченных систем, свидетельствуют о том, что определенные материалы при особых обстоятельствах могут не подчиняться законам энтропии и воссоединяться вместо того, чтобы распадаться. Возможно ли движение материи в противоположном направлении – от неупорядоченности к упорядоченности?
На протяжении 10 лет Розенбаум и его студенты из Института Джеймса Франка пытались ответить на этот вопрос с помощью кусочка фтористо-гольмиево-литиевой соли. Внутри холодильной установки Розенбаума лежал розовый кристалл, завернутый в два слоя меди. По размеру он не превышал и кончика карандаша. За много лет работы со спиновым стеклом Розенбаум очень увлекся этими блестящими маленькими структурами, являющимися одними из наиболее мощных магнитов на Земле. Эта характеристика давала отличную возможность для изучения неупорядоченности. Но сначала нужно было изменить до неузнаваемости сам кристалл, превратив его в неупорядоченное вещество.
Розенбаум распорядился, чтобы в лаборатории, где выращивались кристаллы, соединили гольмий, фтор и литий, первый металл в Периодической таблице. Получившаяся фтористо-гольмиево-литиевая соль была податливой и предсказуемой – высоко упорядоченная структура, чьи атомы вели себя подобно морю микроскопических компасов, показывающих на Север. И тогда Розенбаум при содействии своих сотрудников вывернул структуру соли наизнанку: он извлекал один за другим атомы гольмия и заменял их иттрием – серебристым металлом, не обладающим магнитными свойствами – пока в итоге не получился странный гибрид первоначальной структуры соли под названием литиево-гольмиево-иттриевый тетрафторид.
Убрав все магнитные свойства из этой структуры, Розенбаум породил «спиновую анархию» – атомы этого «Франкенштейна» были ориентированы во всех существующих направлениях. Возможность манипулировать основными свойствами элементов, подобных гольмию, с такой легкостью, порождая странные новые структуры, имела привкус безграничной власти над самой материей. Вооруженный новыми спиновыми стеклами, Розенбаум мог изменять свойства вещества по своему желанию: заставить атомы принять одно направление или заморозить их в каком-либо случайном расположении.
Тем не менее его всемогущество имело пределы. Гольмиевые смеси Розенбаума упрямо вели себя по-своему в некоторых отношениях. Он никак не мог заставить их подчиняться законам температуры. Вне зависимости от того, насколько низкой была температура в холодильной установке, атомы противостояли всякой упорядоченности, словно отряд солдат, отказывающихся маршировать в ногу. Если Розенбаум был «Богом» своих спиновых стекол, то кристалл был «Адамом», упрямо не желавшим подчиняться его наиглавнейшему закону.
Интерес Розенбаума к странным свойствам кристаллического вещества разделяла и Саянтани Гош, одна из его многообещающих аспиранток. Сай, как ее зовут друзья, родилась в Индии и, окончив Кембридж с отличием, в 1999 году выбрала для аспирантуры лабораторию Тома. Практически сразу она отличилась тем, что получила награду Грегора Вентцеля, которую Чикагский университет присуждает лучшему аспиранту первого года, ведущему занятия. Худенькая 23-летняя девушка, производившая поначалу впечатление скромницы, словно прятавшей лицо за копной черных волос, вскоре поразила как ровесников, так и преподавателей своей энергичностью и самоуверенностью, столь редко встречающейся среди студентов-естественников, а также способностью переводить сложные идеи на уровень, доступный любому студенту. Сай стала второй женщиной, удостоившейся заветной награды Вентцеля за все 25 лет ее существования.
Согласно законам классической физики, применение магнитного поля должно разрушать магнитную согласованность атомов вещества. Степень повреждений структуры называется «магнитной восприимчивостью». Обычно неупорядоченные вещества реагируют на магнитное поле, а затем успокаиваются, когда температура падает или магнитное поле достигает точки магнитной насыщенности. Атомы больше не могут двигаться в том же направлении, что и магнитное поле, и поэтому начинают замедляться.
В первых экспериментах Сай атомы фтористо-гольмиево-литиевой соли начинали «сходить с ума» при воздействии на них магнитного поля. Но затем, когда Сай увеличивала мощность поля, начинало происходить что-то странное. Чем больше она увеличивала частоту, тем быстрее сновали атомы. Более того, все атомы, находившиеся в состоянии неупорядоченности, ориентировались в одном направлении и действовали как единое целое. Затем небольшие группы, примерно из 260 атомов, выстраивались в линию и образовывали осцилляторы [27], вместе поворачиваясь в ту или иную сторону. Вне зависимости от того, насколько интенсивным было магнитное поле, применяемое Сай, атомы упрямо оставались соединенными друг с другом, действуя вместе. Такая самоорганизация сохранялась 10 секунд.
Сначала Сай и Розенбаум думали, что подобное явление может быть связано со странными эффектами сохранившихся атомов гольмия. Это один из немногих известных элементов, обладающих настолько «долгоживущими» внутренними силами, что в некоторых источниках они были описаны как нечто существующее в ином измерении, что получило и математическое выражение [28]. Хотя ученые и не понимали данный феномен, они все же опубликовали свои результаты в журнале «Наука» в 2002 году [29].
Розенбаум решил провести другой эксперимент и попытаться выявить свойство кристалла, позволяющее ему выдерживать настолько сильные внешние воздействия. Он поручил разработку исследования своей молодой талантливой аспирантке, посоветовав ей создать компьютерную трехмерную модель эксперимента, который она намеревалась провести. В исследованиях такого рода физикам приходится полагаться на компьютерные модели для математического подтверждения реакций, которые они наблюдают.