Прежде чем завершить разговор о маршрутизации в виртуальных сетях, необходимо сделать еще одно замечание. Многие пользователи сетей Интернет и Ethernet фанатично привязаны к сетям без установления соединения и неистово противопоставляют их любым системам, в которых есть хотя бы намек на соединение на сетевом или канальном уровне. Однако в виртуальных сетях один технический момент как раз-таки очень сильно напоминает установку соединения. Речь идет о том, что работа виртуальной сети невозможна без того, чтобы в каждом кадре был идентификатор, использующийся в качестве индекса таблицы, встроенной в коммутатор. По этой таблице определяется дальнейший вполне определенный маршрут кадра. Именно это и происходит в сетях, ориентированных на соединение. В системах без установления соединения маршрут определяется по адресу назначения, и там отсутствуют какие-либо идентификаторы конкретных линий, через которые должен пройти кадр. Более подробно мы рассмотрим эту тенденцию в главе 5.
4.9. Резюме
В некоторых сетях для любой связи используется единственный моноканал. При их разработке основной проблемой является распределение этого канала между соревнующимися за право его использования станциями. Простейшими схемами распределения являются частотное и временное уплотнение. Они эффективны при небольшом количестве станций и постоянном трафике. Оба метода широко применяются в этих условиях, например, для разделения полосы пропускания в телефонных магистралях.
Когда количество станций велико и непостоянно или трафик является пульсирующим — типичный случай для компьютерных сетей, — частотное и временное уплотнение использовать нецелесообразно.
Было разработано несколько алгоритмов динамического распределения каналов. Протокол ALOHA (чистый или дискретный) используется в многочисленных вариантах в реальных системах, например в кабельных модемах и RFID. Его усовершенствование — возможность прослушивать состояние канала, тогда станции могут отказываться от передачи, когда слышат, что канал занят другой станцией. Применение этого метода — контроля несущей — повлекло создание различных CSMA протоколов, применяемых в локальных и региональных сетях. Это основа классических сетей Ethernet и сетей 802.11.
Широко известен класс протоколов, полностью устраняющий борьбу за канал или, по меньшей мере, значительно снижающий ее напряженность. Протокол битовой карты, протокол с двоичным обратным отсчетом и такие топологии, как кольца, полностью устраняют состязание за канал. Протокол адаптивного дерева снижает его остроту, динамически деля станции на две непересекающиеся группы различного размера, и позволяет состязание только внутри группы; в идеале группа выбирается так, чтобы только одной станции, готовой к передаче, разрешалось это сделать.
Дополнительной проблемой беспроводных ЛВС является трудность обнаружения коллизий передач и возможность различий зон обслуживания станций. В доминирующей беспроводной ЛВС, IEEE 802.11, станции, чтобы смягчить первую проблему, используют CSMA/CA, оставляя маленькие промежутки, чтобы избежать коллизий. Станции могут также использовать протокол RTS/CTS, чтобы сражаться со скрытыми терминалами, которые возникают из-за второй проблемы. IEEE 802.11 обычно используется, чтобы соединить ноутбуки и другие устройства с точками доступа, но он может использоваться и между устройствами. Может использоваться любой из нескольких физических уровней, в том числе многоканальный FDM с и без нескольких антенн, и расширение спектра.
Как и 802.11, считыватели и метки RFID используют протокол произвольного доступа, чтобы сообщить идентификаторы. Другие беспроводные персональные и городские сети имеют отличающееся устройство. Система Bluetooth осуществляет беспроводное присоединение к компьютеру наушников и других видов периферийных устройств. IEEE 802.16 обеспечивает широкую область беспроводного доступа к Интернету для неподвижных и мобильных компьютеров. Обе эти сети используют централизованную схему на основе соединений, где ведущее устройство Bluetooth и базовая станция WiMAX решают, когда каждая станция может послать или получить данные. Для 802.16 эта схема поддерживает различное качество обслуживания для трафика в реальном времени, такого как телефонные звонки, и интерактивного трафика, такого как просмотр веб-страниц. Сложность ведущего устройства Bluetooth приводит к дешевизне ведомых устройств.
Ethernet является доминирующей технологией проводных локальных вычислительных сетей. Классический Ethernet производит распределение канала при помощи метода CSMA/CD с желтым кабелем толщиной с садовый шланг, который тянулся от машины к машине. Архитектура изменилась, скорости возросли от 10 Мбит/с до 1 Гбит/с и продолжают расти. Теперь линии точка-точка, такие как витая пара, присоединяются к концентраторам и коммутаторам. С современными коммутаторами и полнодуплексными каналами нет никакой конкуренции в каналах, и коммутарор может пересылать кадры между различными портами параллельно.
Когда в здании много локальных сетей, необходим какой-то способ их объединения. Для этих целей используются plug-and-play устройства — мосты. При построении мостов применяются алгоритм обратного обучения и алгоритм связующего дерева.
С добавлением в современные коммутаторы этих функций термины «мост» и «коммутатор» стали взаимозаменяемы.
Для упрощения управления ЛВС с мостами появились виртуальные локальные сети, которые позволили отделить физическую топологию от логической. Был разработан стандарт для виртуальных локальных сетей — IEEE 802.1Q, вводящий новый формат Ethernet кадров.
Вопросы
1. Для решения задачи используйте формулу, приведенную в данной главе, записав ее в общем виде. Кадры для передачи прибывают случайным образом на 100-Мбит/с канал. Если в момент прибытия канал оказывается занят, кадр ставится в очередь ожидания. Длина кадра распределяется по экспоненциальному закону с математическим ожиданием, равным 10 000 бит/ кадр. Для каждой из приведенных ниже скоростей прибытия кадров вычислите задержку (включая время ожидания в очереди и время передачи) кадра средней длины.
1) 90 кадров/с.
2) 900 кадров/с.
3) 9000 кадров/с.
2. Группа из N станций совместно использует канал чистой системы ALOHA, работающий со скоростью 56 Кбит/с. Каждая станция передает 1000-битный кадр в среднем каждые 100 с, даже если предыдущий кадр еще не был передан (например, станции могут буферизировать исходящие кадры). Каково максимальное значение N?
3. Сравните время задержки чистой и дискретной систем ALOHA при низкой нагрузке. У какой из систем это время будет меньшим? Поясните свой ответ.
4. Большая группа пользователей системы ALOHA формирует 50 запросов в секунду, включая первичные и повторные передачи. Время разделено на интервалы по 40 мс.
1) Каковы шансы успеха с первой попытки?
2) Какова вероятность того, что перед успехом произойдет ровно k столкновений?
3) Чему равно среднее число попыток передачи?
5. В дискретной системе ALOHA с бесконечным числом пользователей средний период ожидания станции между столкновением и повторной попыткой составляет 4 временных интервала. Нарисуйте зависимость задержки от потока в канале для данной системы.
6. Какова длина слота разрешения спора в CSMA/CD для:
1) 2-километрового двухпроводного кабеля (скорость распространения сигнала составляет 82 % скорости распространения сигнала в вакууме)?
2) 40-километрового многомодового оптоволоконного кабеля (скорость распространения сигнала составляет 65 % скорости распространения сигнала в вакууме)?
7. Сколько времени в худшем случае придется ожидать начала передачи станции s, если в локальной сети применяется базовый протокол битовой карты?
8. В протоколе двоичного отсчета объясните, как станция с более низким номером может лишаться возможности отправки пакета
9. Шестнадцать станций, пронумерованных от 1 до 16, соревнуются за право использования общего канала, используя протокол движения по адаптивному дереву. Сколько интервалов времени потребуется для разрешения спора, если все станции, чьи номера являются простыми числами, одновременно станут готовыми к передаче?