Литмир - Электронная Библиотека
A
A

– Ага, – поняла Галатея. – Стрелки образуют кольцо, в центре которого будет торчать, как палец, этот самый провод.

– Верно, – согласился Джерри. – Я вижу, что твоя любовь к украшениям стала помогать тебе в физике.

– Ну… – засмущалась Галатея. – Совсем немножко…

– Эрстед стал знаменит, но история не сохранила имени остроглазого швейцара.

– Джерри, – деликатно кашлянула Галатея. – Тебе не кажется это немножко несправедливым?

– Кажется, – кивнул Джерри и продолжил: – Исследователи, которые узнали об опыте Эрстеда, удивлялись тому, что магнитное взаимодействие между объектами было направлено не друг к другу, как это было в теории гравитации Ньютона и электростатическом законе Кулона, а в сторону. Переводчики работы Эрстеда, сомневаясь в том, что они правильно поняли физика, давали рядом с переводом выдержку из оригинала статьи профессора, написанной на латыни. Результаты Эрстеда были настолько сенсационны, что о них узнали по всей Европе за считаные недели.

В том же году французский исследователь Андре-Мари Ампер обнаружил, что два провода под током отталкиваются или притягиваются друг к другу – в зависимости от направления течения тока. Он также обнаружил, что катушка из намотанного электрического провода становится сильным магнитом. Ампер также изобретает электромагнитный телеграф на основе воздействия провода с током на магнитную стрелку. В 1820 году Ампер писал: «…можно было бы, взяв столько проводников и магнитных стрелок, сколько имеется букв, и помещая каждую букву на отдельной стрелке, устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок. Соединяя поочередно концы столба с концами соответствующих проводников, можно было бы лицу, которое наблюдало бы за буквами на стрелках, передавать сведения со всеми подробностями и через какие угодно препятствия. Если установить со стороны столба клавиатуру с буквами и производить соединения нажатием клавиш, то этот способ сообщения мог бы применяться достаточно просто и не требовал бы больше времени, чем необходимо для нажатия клавиш на одной стороне и чтения каждой буквы на другой».

Фарадея чрезвычайно увлекли опыты Эрстеда и Ампера. Изучая опыты Эрстеда, Майкл Фарадей интерпретировал их следующим образом: ток в проводе создаёт вокруг магнитное поле, на которое реагирует стрелка компаса. Но можно ли создать электрический ток из магнитного поля? Фарадей был уверен: если Эрстед превратил электричество, текущее по проводу, в магнитное поле, воздействующее на компасную стрелку, то должен быть и обратный процесс!

В 1822 году Фарадей записал в своём дневнике задачу: «Превратить магнетизм в электричество».

Примерно в это же время Дэви с другим английским физиком, Волластоном, попробовали сконструировать электрический двигатель, но потерпели неудачу. За эту сложную проблему взялся Фарадей. В 1821 году он опубликовал работу, где продемонстрировал работоспособность сразу двух возможных конструкций электродвигателя. Он научился превращать электрическую энергию в механическую!

– Наверное, это очень не понравилось Дэви и Волластону! – воскликнул Андрей.

– Да. Волластон и Дэви даже стали обвинять Фарадея в плагиате их идей.

– Но как же это возможно? – удивилась Галатея. – Ведь идеи Дэви и его приятеля не сработали, а идея Фарадея удалась! Разве можно украсть неправильную идею и сделать её правильной? Это ведь будет уже другая идея!

– История науки пестрит взаимными обвинениями в заимствовании идей – и далеко не всегда можно разобраться, кто прав, а кто – нет. Фарадею эти склоки были столь неприятны, что он попросту перестал работать в области электродинамики и переключился на другие области. Вернулся он к электрическим опытам только тогда, когда оба его оппонента уже умерли вместе со своими идеями – и никто уже не мог обвинить его в их заимствовании. Начиная с этого момента Фарадей совершает революцию в области электродинамики. В 1831 году он открывает электромагнитную индукцию – или способ превращения магнитного поля в электричество.

– Как же он это сделал? – поинтересовалась Галатея. – Из магнита получил электричество?

Джерри призадумался и быстро нашёлся:

– А я сейчас вам покажу, как он это сделал! У вас есть магнит?

– Конечно, есть! – обиделся Андрей.

Они стали копаться в большом ящике с игрушками. – Отлично! – сказал Джерри, держа в руках подковообразный магнит. – Это лучшая детская игрушка всех времён. Теперь нам нужны провода… – он продолжил рыться в ящике, – …и какой-нибудь простенький вольтметр или любой другой измеритель тока.

– Лапок от дохлых лягушек у нас нет! – сказала Галатея.

– Тогда вот этот приборчик сойдёт, – показал Джерри найденный вольтметр, которым Андрей проверял электрические схемы, собираемые им для уроков физики.

– Теперь сделаем катушку в сотню витков, а лучше – ещё больше… – и Джерри стал наматывать провод вокруг пустого пластикового стаканчика, – …и её свободные концы присоединим к вольтметру.

Пара минут – и конструкция из пластикового стаканчика, обмотанного проводом и присоединённого к вольтметру, готова.

– И это всё? – удивилась Галатея.

– Да! – подтвердил Джерри. – Теперь мы можем приступать к опытам.

Он взял в руки магнит – и опустил его конец в стаканчик. В этот момент стрелка вольтметра дёрнулась на несколько милливольтов.

– Я видела, видела! – завопила в восторге Галатея. – Появился ток!

– Острый глаз! – похвалил девочку Джерри. – Теперь вытащи магнит сама.

Галатея быстро выдернула магнит из стаканчика – и стрелка вольтметра снова дернулась, только уже в другую сторону.

– Я – настоящий Фарадей! – воскликнула Галатея.

И они начали экспериментировать с новой игрушкой, вернее – с новым научным прибором.

Джерри сказал, глядя на увлечённых детей:

– Фарадей доказал: изменение величины магнитного поля, пронизывающего замкнутый проводник, заставляет заряды в проводе двигаться, создает в нём электрический ток. Если мы соберём машину, периодически изменяющую магнитное поле, пронизывающее катушку, мы получим электрический генератор – источник тока, во многих отношениях гораздо лучший, чем батарея Вольты. С помощью этих простых предметов учёный создал прототип электрогенератора, который до сих пор служит главным источником получения электрического тока, отодвигая вольтов столб на второй план. Эти электрогенераторы, вращаемые огромными турбинами, стоят на гидроэлектростанциях, а также на тепловых и на атомных станциях по выработке электричества.

– Так вот кто придумал эти электростанции! – обрадовалась Галатея, видимо давно терзавшаяся догадками. – А электромоторы в автомобилях тоже придумал Фарадей?

– Не совсем. Он показал, как можно получать из электричества механическую энергию: в его опыте свободно висящий провод окунался в ванночку со ртутью, в середине которой был установлен магнит. Когда по проводу шёл ток, он начинал вращаться вокруг магнита. От этой конструкции до электродвигателей современного типа было очень далеко.

Многие изобретатели пытались создать практичный электродвигатель. Это удалось российскому учёному немецкого происхождения Борису Якоби. Все остальные изобретатели пытались создать электродвигатель, который был аналогом паровой машины и двигал поршень вперёд и назад. В 1834 году Якоби предложил совершенно иной электродвигатель – с вращающейся внутренней частью. Современные электромоторы устроены именно так, как двигатель Якоби. В 1839 году по Неве отправилась в плавание лодка с 14 пассажирами. Против течения реки лодку двигал мотор Якоби с мощностью в одну лошадиную силу. Впервые в истории электрический дракон послушно нёс людей на своей спине.

Но первым, кто доказал, что дракона можно заставить крутить колеса и винты, был всё-таки Фарадей. Имя Фарадея становится всемирно известным, о нём пишут газеты, академии разных стран выбирают его своим почётным членом.

8
{"b":"635505","o":1}