Этот проект демонстрирует принцип, действующий во Вселенной миллиарды лет: чтобы построить что-нибудь по-настоящему масштабное, следует начинать с малого, постепенно двигаясь в сторону увеличения. Например, формирование планет Солнечной системы происходило путем слияния микроскопических пылинок, окружающих нашу молодую звезду.
Несмотря на уверенность в том, что все именно так и происходило, планетологам пришлось сначала ответить на два непростых вопроса. Во-первых, было далеко не очевидно, почему собственно частицы пыли удерживаются вместе. Кучу камней, из которой состоит астероид Итокава, удерживало вместе его собственное гравитационное поле. Сила гравитационного притяжения зависит от массы объекта. К примеру, если диаметр такого каменистого тела меньше 1 км, его массы недостаточно, чтобы обеспечить силу, необходимую для удержания составляющих его частей. Результат можно сравнить с попыткой слепить что-нибудь из сухого песка на пляже: стоит убрать руки, как сооружение тут же рассыпается.
Во-вторых, оставалось загадкой, как была достигнута такая скорость протекания процесса, которая обеспечила формирование Солнечной системы до момента уничтожения Солнцем протопланетного газового диска. Наблюдения за протопланетными дисками вокруг молодых звезд показали, что на формирование планет отводится не более 10 млн лет. В рамках этого временного промежутка из пылинок размером в одну десятую песчинки должна сформироваться молодая планета с массой, достаточной для удержания газовой атмосферы, несмотря на рассеивание остальной части диска.
Это похоже на эксперимент, в котором вам дают коробку с кубиками и просят построить из них башню, но, когда вы беретесь за работу, оказывается, что кубики абсолютно гладкие, а коробку нужно вернуть сразу после перерыва на обед.
На Земле даже башню, построенную из рекордного количества кубиков, можно легко измерить в метрах. Во Вселенной все иначе: масштабы строительства там куда больше. Чтобы не оперировать числами умопомрачительной длины, давайте сделаем небольшое отступление и подберем более практичные единицы измерения расстояний, подходящие для исследования Солнечной системы.
Разумеется, никто не запрещает использовать при оценке положения планет метры или километры, но у неприлично длинных чисел есть одна особенность: нам трудно понять, что они значат. Например, расстояние от Земли до Солнца составляет 149 600 000 км, а Юпитер находится в 778 340 000 км от нашего светила. Поскольку мы привыкли к дистанциям иного порядка, вроде поездки в супермаркет, эти расстояния воспринимаются как непостижимо большие, и нам трудно с ходу оценить, насколько дальше относительно нас находится Юпитер в Солнечной системе.
Для решения этой проблемы в качестве единицы измерения астрономы используют расстояние от Земли до Солнца. Его назвали астрономической единицей (сокращенно – а.е.). По определению, Земля в среднем находится на расстоянии 1 а.е. от Солнца. Расстояние от Юпитера до Солнца можно записать как 5,2 а.е., а значит, эта планета более чем в 5 раз дальше от Солнца, чем Земля.
Приведенные значения важны, поскольку от расстояния до Солнца зависит тип космической пыли, из которой формируется планета. Нагреваемый молодой звездой протопланетный диск в центре значительно горячее, чем по краям, куда солнечным лучам приходится добираться дольше. Этот градиент температуры определяет, какие элементы могут конденсироваться в твердые тела. Подобно воде, которая превращается в лед при 0 °C, другие молекулы превращаются из газа в твердые частицы пыли при более низких или высоких температурах. Вблизи от Солнца, внутри орбиты Меркурия, температура превышает 2000 °C. Под ее воздействием все твердые тела испаряются, в результате чего образуется пространство без пыли. По мере удаления от звезды температура падает до 1500 °C, что создает условия для формирования первых частичек пыли из металлов, включая железо, никель и алюминий. На орбите Земли, то есть на расстоянии 1 а.е., к ним присоединяются силикаты, а когда температура опускается ниже точки замерзания, появляются льды. Первый лед, который образуется в процессе затвердевания, – лед из чистой воды, состоящей из водорода и кислорода. Дальнейшее понижение температуры приводит к образованию других льдов на основе водорода, включая твердый метан и аммиак. В состав этих льдов входят элементы, которые встречаются намного чаще, чем металлы внутреннего диска, что приводит к лавинообразному формированию нового материала там, где они затвердевают. Границу, после которой появляются льды, часто называют линией льдов, линией замерзания или снеговой линией. Она отделяет планеты земной группы, такие как Земля и Марс, от газовых гигантов вроде Юпитера. Более того, она помогает объяснить основные различия между ними.
Образуясь из частиц пыли в протопланетном диске, каждая планета состоит из твердых тел, которые окружали ее в процессе формирования. Например, в случае с Меркурием это привело к образованию объекта, который состоит преимущественно из железа[5]. С учетом небольшого размера Меркурия, из-за которого гравитационные силы сжимают его не так сильно, как Землю, наличие большого количества тяжелого вещества в составе этой планеты обеспечивает ей самую высокую плотность в Солнечной системе. Плотность планет, которые находятся на большем удалении от Солнца, оказывается несколько ниже, поскольку в состав доступных частиц пыли входит больше различных молекул, но при этом эти планеты остаются каменистыми. А как только мы пересекаем снеговую линию, диск заполняют льды с низкой плотностью. Благодаря резкому увеличению количества вещества из него могут формироваться более крупные объекты, которые однажды могут стать ядрами планет-гигантов.
Впрочем, даже если приведенное описание не противоречит идее о том, что планета образуется из находящихся поблизости частиц пыли, оно не объясняет, как они соединяются вместе.
Клей-карандаш
Взвешенные в газе частицы пыли сбить с пути истинного легче, чем ребенка в кондитерском отделе. Это как раз то что нужно для формирования планеты, ведь если бы пыль оставалась на строго круговых орбитах, столкновения происходили бы редко, а до образования крупных объектов дело никогда бы не доходило. Нам повезло, что у пыли есть авантюрные наклонности, которые заставляют частицы отклоняться от круговых орбит, переходя дорогу другим частицам.
Впервые этот тип аномального движения наблюдал в 1827 г. ботаник по имени Роберт Броун, изучавший поведение частиц пыльцы при нахождении во взвешенном состоянии в воде. Броун заметил, что частицы движутся беспорядочно, но ответить на вопрос о причине этого движения так и не смог. И только в начале следующего столетия проблему распутал Альберт Эйнштейн, который понял, что о пыльцу ударялись молекулы воды. Эйнштейн бы мог получить Нобелевскую премию за это открытие, поскольку оно подтверждало существование атомов и молекул, но он уже получил ее пятью годами ранее за совершенно другое исследование. Вместо него в 1926 г. награду получил французский физик Жан Батист Перрен, который экспериментально подтвердил предложенное Эйнштейном объяснение. Наблюдений Роберта Броуна оказалось недостаточно для какой-нибудь награды, но само явление было названо в честь него броуновским движением.
В протопланетном диске роль молекул воды, которые хаотично движутся вокруг маленьких частиц пыли, выполняет газ. Помимо броуновского движения на частицы пыли также воздействует собственное некруговое движение газа, вызываемое пронизывающим диск магнитным полем. Наконец, небольшие карманы газа чуть большей плотности тоже могут становиться источниками слабого гравитационного притяжения для легко поддающихся его воздействию крошечных частичек.
О силе, заставляющей притягиваться две сталкивающиеся частицы в самом начале процесса образования планеты, мы знаем несколько больше. Размер частиц пыли, сконденсировавшихся в протопланетном диске, равен одной десятой размера песчинки, то есть он измеряется в микрометрах (тысячных долях миллиметра). При движении на скоростях ниже 1 м/с эти частицы могут удерживаться вместе электрическим зарядом их атомов, образуя неплотную массу.