Литмир - Электронная Библиотека

Выступление Стивена в 1965 году произвело на меня глубочайшее впечатление. Не только благодаря его аргументам и выводам, но и, что более важно, его прозорливости и креативности. После лекции я нашел его, и мы около часа проговорили с глазу на глаз. Это стало началом дружбы, которая продлилась всю жизнь; дружбы, основанной не только на общих научных интересах, но и на удивительном единодушии, необъяснимой способности понимать друг друга с полуслова. Вскоре мы стали проводить все больше времени вместе, разговаривая о жизни, о наших близких, даже о смерти чаще, чем о науке, хотя научные интересы все равно оставались главным связующим звеном между нами.

В сентябре 1973 года я взял Стивена и его жену Джейн с собой в Москву. Несмотря на разгар холодной войны, я каждый год, начиная с 1968-го, проводил в Москве по месяцу, а то и дольше, сотрудничая с группой ученых, которую возглавлял Яков Борисович Зельдович. Зельдович был выдающимся астрофизиком и одним из отцов советской водородной бомбы. Ему было запрещено выезжать в Западную Европу или Америку из-за закона о неразглашении военной тайны. Он мечтал пообщаться со Стивеном, но не мог поехать к нему, поэтому Стивен приехал сам.

В Москве Стивен покорил Зельдовича и других ученых своими теориями; в свою очередь Стивен кое-что почерпнул у Зельдовича. Больше всего мне запомнился день, который мы провели с Зельдовичем и его аспирантом Алексеем Старобинским в номере Стивена в гостинице «Россия». Зельдович в общих чертах рассказывал об их поразительных открытиях, а Старобинский объяснял их с точки зрения математики.

Для вращения черной дыры необходима энергия. Нам это уже было известно. Черная дыра, как они объясняли, может рождать частицы, и эти частицы разлетаются, унося с собой энергию вращения. Это было ново и удивительно – но не сильно удивительно. Если объект обладает энергией движения, природа естественным образом находит способ извлечь ее. Мы уже знали другие способы извлечения вращательной энергии черных дыр; это был просто новый, хотя и неожиданный способ.

Самая большая ценность таких бесед в том, что они дают толчок новому направлению мыслей. Так произошло и со Стивеном. Он несколько месяцев размышлял над открытием Зельдовича – Старобинского, рассматривая его с разных сторон, пока в один прекрасный день его не озарила поистине гениальная мысль: после того как черная дыра перестает вращаться, она продолжает испускать частицы. Она может излучать, словно она горячая, как Солнце, хотя на самом деле не очень горячая, а скорее умеренно теплая. Чем тяжелее дыра, тем ниже ее температура. Дыра массой с Солнце обладает температурой в 0,00000006 К, или в 0,06 миллионных градуса выше абсолютного нуля. Формула для расчета этой температуры теперь выгравирована на надгробии Стивена в Вестминстерском аббатстве в Лондоне, где его прах покоится между могилами Исаака Ньютона и Чарльза Дарвина[1].

Эта «температура Хокинга» черной дыры и ее «излучение Хокинга»[2] (как их стали называть позже) – поистине радикальные открытия; возможно, самые радикальные в теоретической физике второй половины ХХ века. Мы увидели глубокую связь между общей теорией относительности (черные дыры), термодинамикой (физика тепла) и квантовой физикой (создание частиц там, где их не существовало). Например, это навело Стивена на мысль, что черная дыра обладает энтропией, а это означает, что где-то внутри или вокруг черной дыры существует огромная хаотичность. Он пришел к выводу, что количество энтропии (логарифм степени хаотичности дыры) пропорционально площади поверхности дыры. Формула энтропии[3] выгравирована на памятнике Стивену перед колледжем Гонвиль и Киз в Кембридже, где он работал.

Последние сорок пять лет Стивен и сотни других физиков стремились понять истинную природу хаотичности черной дыры. Это вопрос, который порождает новые мысли об объединении квантовой теории с общей теорией относительности, а если точнее, о плохо еще понимаемых законах квантовой теории гравитации.

Осенью 1974 года Стивен перевез своих аспирантов и семью (жену Джейн и детей – Роберта и Люси) в Пасадену, Калифорния, чтобы на год погрузиться в интеллектуальную жизнь моего университета – Калифорнийского технологического (Калтех) – и временно присоединиться к моей исследовательской группе. Это был славный год, который потом стали называть «золотым веком исследований черных дыр».

В течение этого года Стивен со своими и некоторыми из моих учеников старался глубже понять природу черных дыр. До некоторой степени я и сам занимался этой проблемой. Но присутствие Стивена и его ведущая роль в нашей объединенной исследовательской группе дали мне свободу заняться новым направлением (о чем я мечтал уже несколько лет) – гравитационными волнами.

Существует лишь два типа волн, которые способны перемещаться во Вселенной и доносить до нас информацию из ее глубин: электромагнитные (в том числе свет, рентгеновские лучи, гамма-лучи, микроволны, радиоволны) и гравитационные волны.

Электромагнитные волны – это пульсирующие электрические и магнитные силы, которые перемещаются со скоростью света. Встречаясь с заряженными частицами, такими как как электроны в антенне радиоприемников и телевизоров, они приводят эти частицы в движение, тем самым передавая содержащуюся в них информацию. Эта информация может быть усилена и направлена в динамик или на телевизионный экран, становясь доступной для человеческого восприятия.

Гравитационные волны, согласно Эйнштейну, – это пульсация искривленного пространства: пульсирующее растяжение и сжатие пространства. В 1972 году Райнер (Рай) Вайсс из Массачусетского технологического института изобрел детектор гравитационных волн. В этом устройстве, представляющем собой Г-образную вакуумную трубку, на концах и в месте изгиба располагались зеркала, которые в одном отрезке расходились благодаря расширению пространства, а в другом сходились благодаря сжатию пространства. Райнер предложил использовать лазерный луч для измерения характера пульсаций при расхождении и сжатии. Лазерный луч может извлечь информацию из гравитационных волн, а сигнал затем может быть усилен и передан в компьютер, чтобы стать доступным человеческому пониманию.

В основе изучения Вселенной с помощью электромагнитных телескопов стоит изобретение Галилеем небольшого оптического телескопа. Направив его на Юпитер, Галилей обнаружил четыре крупнейших спутника этой планеты. За четыре сотни лет, прошедших с тех пор, астрономия полностью преобразила наши представления о Вселенной.

В 1972 году я со своими учениками начал размышлять, о том, что можно узнать о Вселенной с помощью гравитационных волн. Мы стали разрабатывать идеи для гравитационно-волновой астрономии. Поскольку гравитационные волны – это форма искривления пространства, наиболее интенсивно их испускают объекты, которые полностью или частично состоят из искаженного пространства-времени, в частности именно черные дыры. Мы пришли к выводу, что гравитационные волны – идеальный инструмент для изучения и проверки гипотез Стивена о природе черных дыр.

В более широком смысле нам казалось, что гравитационные волны настолько сильно отличаются от электромагнитных волн, что благодаря им мы почти гарантированно сможем совершить новую революцию в понимании Вселенной, возможно, сопоставимую по масштабам с электромагнитной революцией, произошедшей после Галилея, – если эти неуловимые волны удастся обнаруживать и отслеживать. Но это значительное «если»: по нашим оценкам, гравитационные волны, которые окутывают Землю, настолько слабы, что зеркала в концах Г-образной трубки, придуманной Раем Вайссом, будут колебаться относительно друг друга не более чем на одну сотую диаметра протона (это 1/10 000 000 размера атома), даже если расстояние между зеркалами составит несколько километров. Сложность измерения столь незначительных колебаний была колоссальной.

вернуться

1

Краткие ответы на большие вопросы - i_006.png
. – Прим. ред.

вернуться

2

Излучение Хокинга – излучение черной дырой различных элементарных частиц. – Прим. ред.

вернуться

3

Краткие ответы на большие вопросы - i_007.png
 или
Краткие ответы на большие вопросы - i_008.png
. – Прим. науч. ред.

2
{"b":"632861","o":1}