И наоборот, экспликация семиотических элементов, скрытых в естественно-языковом высказывании, делает невозможным их смещение, часто происходящее даже в естественно-языковых текстах. В частности подобная экспликация существенно проясняет проблемы, связанные с «парадоксами математической логики», которые во многом оказываются следствием слишком простой семиотической модели, лежащей в основе математической логики, модели не производящей даже полученных Фреге семиотических различений.
Можно сформулировать следующий семиотический принцип, на который, как нам кажется, должно опираться любое логическое исчисление: каждое различение смыслов знака, считающееся существенным при семиотическом анализе логической системы, должно быть эксплицировано в обозначениях19.
В противном случае при формально логической записи не только не происходит прояснения естественно-языковых высказываний, но, напротив, смысл этих высказываний чрезвычайно затемняется. Дело в том, что в текстах на естественном языке правильное понимание смысла слова, включая и ту его часть, которая определяет логику умозаключения, достигается погружением слова в соответствующий контекст, либо в текст добавляется метатекст (естественно-языковые фрагменты, управляющие способом понимания высказывания). И то, и другое в формальных текстах отсутствует. В идеале они являются контекстно-свободными (хотя в действительности это не всегда так, иногда используются неэксплицированные правила понимания формальных текстов).
Семиотический анализ логических формализмов представляется нам весьма актуальной задачей, однако полный анализ такого рода чрезвычайно громоздок даже для простых формализмов. Здесь мы приведем лишь некоторые наиболее простые и очевидные примеры.
Парадоксы сокращенных обозначений
Хорошо известен широко употребляемый в математической логике способ обозначений, согласно которому простое написание некоторой формулы (например Р (х)) есть одновременно утверждение о ее истинности. Таким образом, с самого начала в формуле не отражены необходимые, вообще говоря (см. цитиров. выше работу Виндельбандта), различения суждения и оценки. Это не значит, что указанное различения полностью игнорируется. Однако отсутствие его явной экспликации приводит к заведомой двусмысленности, так как иногда необходимо использовать формулы безотносительно к утверждениям об их истинности (не говоря уже о том, что такое употребление формулы противоречит интуиции).
В случае достаточно сложного текста следить за различением подобных двусмысленностей без наличия большой практики становится очень трудно, да и при наличии таковой возможны логические ошибки. Контекстную зависимость смысла слов естественного языка можно рассматривать, таким образом, как механизм, эффективно препятствующий возникновению подобных трудностей. Кроме того, в естественных языках существуют специальные средства для необходимых семиотических различений, имеющие грамматический (например, артикль) или прагматический характер.
Представляет интерес на нескольких примерах проанализировать с семиотической точки зрения функционирование формально-логических систем. Рассмотрим фрагмент текста работы Гильберта и Аккермана, в котором вводятся аксиомы узкого исчисления предикатов [Гильберт, Аккерман, 1947, с. 97].
«К этим аксиомам мы присоединим теперь в качестве второй группы две аксиомы для “все” и “существует”»:
e) (x) F (x)→F (y);
f) F (y) → (Ex) F (x).
Первая из этих аксиом означает «Если предикат F выполняется для всех x, то он выполняется также для любого y».
Вторая формула читается так: «Если предмет F выполняется для какого-нибудь y, то существует x, для которого выполняется F».
Этот текст особенно интересен по следующим причинам:
1. В нем вводятся аксиомы.
2. Поясняется их естественно-языковое содержание, т.е. вводится способ понимания знаковой системы.
По замыслу основателей математической логики «…чего удалось достичь благодаря языку формул в математике, то же должно быть получено с его помощью и в теоретической логике, а именно: точная научная трактовка ее предмета. Логические связи, которые существуют между суждениями, понятиями и т.д. находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении» [Гильберт, Аккерман, 1947, с. 17].
Именно поэтому особенно интересно сопоставить знаковое и словесное выражение для аксиом формальной системы.
Рассматривая приведенный выше фрагмент логического текста нетрудно заметить следующие его особенности:
знак F (y) в формулах e) и f) трактуется по-разному и имеет два смысла. В е) – F выполняется для любого y. В f) F выполняется для какого-нибудь y.
По-видимому, различение этих смыслов связано с местом F (y) в формулах – в одном случае – на месте консеквента, в другом – на месте антицедента. Различие в смысле, однако, очень велико и никак специально не оговорено.
Совершенно неясно, что имеется в виду в этих текстах под x и y. То ли это объекты, принадлежащие области индивидуумов, то ли это имена объектов, то ли имена ролей [Дорфман, Сергеев, 1983]. Неясно, различны ли объекты, обозначенные разными именами, а также какие из них потенциальны, а какие актуальны. По-видимому, х обозначает потенциальный объект, а y – актуальный.
Уже такой поверхностный анализ показывает, что чтение указанных формул предполагает определенный способ понимания формул, о котором в тексте ничего не говорится, хотя этот текст вводит аксиомы, т.е., обязан содержать интуитивно исчерпывающее описание способа понимания формул. Аналогичные примеры в [Гильберт, Аккерман, 1947] можно с легкостью умножить.
К сожалению, подобное пренебрежение семиотическими различениями и даже сознательная эксплуатация возникающих двусмысленностей заметно не только в «Основах теоретической логики» [Гильберт, Аккерман, 1947], являющейся одной из первых работ по математической логике.
В качестве другого примера рассмотрим язык SELF, предложенный Шмульяном для формализации феномена «самоописания», присутствующий в известном логическом «парадоксе лжеца» [Манин, 1979, с. 78].
«Алфавит SELF: E, * * (симметричные кавычки).
r (отношение ранга I); ¬)(отрицание).
Синтаксис SELF. К отмеченным выражениям принадлежат: ярлыки, экспонаты, формулы и имена.
Ярлык любого выражения Р – это *Р* (Р в кавычках).
Экспонат любого выражения Р – это Р *Р* («вещь с ярлыком»).
Формулы – это выражения вида r E… E *P* и ¬ r E … E *Р*.
Здесь Е стоит на К > 0 местах после r. Сокращенная запись:
r Ек *Р* или ¬ r Ек *Р*. Наконец, введем бинарное отношение на множестве всех выражений «быть именем». Оно определяется рекурсивно:
1. Ярлык Р является именем Р.
2. Если Р – имя Q, то ЕР – имя экспоната Q, т.е. имя выражения Q *Q*».
После этих определений утверждается, что «Е*Е* является одним из двух своих имен. Точно так же формула r Е* r Е говорит о самой себе» [Манин, 1979, с. 79]. Язык SELF представляется в семиотическом плане намного более продвинутым, чем формальный язык узкого исчисления предикатов. Он эксплицирует ряд семиотических различий, позволяющих описывать весьма тонкие логические конструкции.
Семиотический анализ приведенного текста, однако, немедленно выявляет тот факт, что символ Е в этом языке употреблен в двух совершенно различных смыслах:
1. Как семиотический оператор действующий на имя, т.е. выражение *Q*, и превращающий его в Е *Q* – имя экспоната Q в соответствии с (b)).
2. Как индивидуум, являющийся «отмеченным выражением» (его можно заключать в скобках).
Ясно, что в первом смысле Е как семиотический оператор является элементом метатекста, а во втором смысле – элементом текста.
Только эта двойственность смыслов символа Е и дает возможность получить «самоописывающееся» выражение r Е* r Е*, которое потом используется для доказательства упрощенного аналога теоремы Тарского о невыразимости истинности20. Заметим, что применение сформулированного выше семиотического принципа построения формальных систем исключает возможность написания в рамках идей, положенных в основу языка SELF, «самоописывающихся» выражений, которые получаются только путем введения знаковой двусмысленности.