Как мы видим, все эти объемы лежат за пределами нашего горизонта событий, поэтому, согласно СТО, невозможна причинная связь с нашими «двойниками». Тем не менее наличие мультиверса тестируемо [Stoeger, 2007; Weinberg, 2005; Aguirre, 2005]. Примером такого теста является проблема космологической константы, решенная в [Vilenkin, 2001]. Как мы сейчас покажем, существует другая, поразительная возможность проверить гипотезу мультиверса, используя Аргумент Doomsday! Одним из интересных следствий описанной картины является то, что если наличествует множество «вас» с одинаковой памятью и прошлой жизнью, но с разным будущим, то вы в принципе не способны вычислить ваше будущее даже при условии, что вся полная история космоса вам известна! Происходит это потому, что нет никакого способа определить, какая из этих «копий» действительно «вы». Лучшее, что можно сделать, – это вычислить вероятность того или иного события, используя базовое предположение о том, что вы – типичный наблюдатель. Такая методика широко практикуется в современной космологии и лежит в основе вычислений с использованием так называемого антропного принципа8. Рассмотрим теперь наблюдателя, скажем меня, который остановился между двумя дверями 1 и 2 и принимает решение, в какую из них зайти. Если я выберу дверь 1, то можно не сомневаться, что за пределами расстояния 10 в степени 1029 м (но не дальше чем 10 в степени 1091 м) находится хаббловский объем, содержащий моего двойника, выбравшего дверь 2. Получается забавная картина: выбор той или иной двери эквивалентен «выбору» того или иного хаббловского объема. Разумеется, на самом деле я нахожусь лишь в одном объеме, но поскольку не знаю в каком, то две картины: (1) я живу в одном хаббловском объеме и (2) я умею «переходить» (правда, спонтанно и неуправляемо) из одного объема в другой – эквивалентны. На самом деле это простое следствие того, что различия между хаббловскими объемами порождены различиями в начальных условиях, в частности флуктуациями в ранней вселенной, которые, как уже говорилось, обладают свойством эргодичности. Повторим, что вследствие эргодичности вероятностное распределение исходов в данном хаббловском объеме совпадает с распределением, полученным случайным выбором объема из всех возможных. Применительно ко мне это означает, что я могу, если хочется, считать себя «случайно блуждающим странником по хаббловским объемам». Вспомним пример Тегмарка, с которого мы начали этот раздел: некоторые из вас бросили сейчас читать эту работы, придя к заключению, что все это просто чепуха, не заслуживающая внимания. Однако должны существовать хаббловские объемы, в которых Вы не поддались этому порыву и решили дочитать до конца (автор надеется, что находится в одном из таких хаббловских объемов). Теперь рассмотрим ситуацию за долю секунды до того, как решение было принято. После принятия решения Ваша жизнь и жизнь двойника стали различаться. Вы могли принять решение не читать, но могли принять решение и дочитать. Приняв то или иное решение, Вы определили, в каком именно хаббловском объеме находитесь. Но не будет логической ошибки сказать, что, приняв то или иное решение, Вы «перешли» в тот или иной объем! Например, Вы не стали читать и, разумеется, остались в том объеме, где и были. Но Ваш более отзывчивый двойник теперь находится на расстоянии 10 в степени 1029 м от Вас. Можно, конечно, сказать, что он всегда там был, но, с другой стороны, до того, как решение было принято, Вы оба были одним и тем же лицом! Не существовало способа отличить Вас друг от друга, значит, Вы были не просто двойниками! Вы были ОДНИМ И ТЕМ ЖЕ ЧЕЛОВЕКОМ. А раз так, то ситуация выбора может быть непротиворечиво описана следующим образом: сделав выбор, я нахожу себя в другом хаббловском объеме, не в том, в котором находился ДО выбора. Все физические процессы, которые я наблюдаю вокруг, будут выглядеть одинаково вне зависимости от того, странствую ли я при каждом выборе по хаббловским объемам или нахожусь в одном из них. Вероятно, это утверждение покажется тривиальным одним и неверным другим. Для этих вторых мы приведем дополнительные аргументы в пользу того, что мы можем считаться «случайно блуждающими странникамим по хаббловским объемам», несмотря на то что находимся лишь в одном из них, в следующем разделе.
Но, скажет критик, даже если это верно, то поскольку два способа описания моей эволюции в мультиверсе (т.е. я странствую или все время нахожусь в одном объеме) физически неразличимы, то в чем разница? Разница в том, что теперь Аргумент Doomsday оказывается верным!
Для того чтобы понять это, рассмотрим второй сценарий игры, тоже описанный Кен Олумом.
Стратегия 2.
2.1. Если выпадает «орел», то богиня случайным образом расселяет всех 109 человек (и меня, разумеется) по номерам.
2.2. Если выпадает «решка», то богиня обязательно выбирает меня и еще девять человек (а их – случайным образом) и наугад расселяет их по первым 10 номерам.
Отличие стратегии 2 от стратегии 1 в том, что я со 100%-ной гарантией являюсь членом реферируемой группы вне зависимости от того, как упадет монета. Первую стратегию Олум назвал симметричной, а вторую – асимметричной (я оказываюсь выделенным). Проанализируем асимметричную игру на тех же условиях: я обнаруживаю себя в номере 7. Пусть монета упала «орлом». Так как я знаю, что я непременно член реферируемой группы, то вероятность моего попадание в первую десятку номеров составит 10−8. Если же монета упала «решкой», то я с вероятностью 1 попадаю в первую десятку. Другими словами, вероятность моего попадания в седьмой номер в случае полного отеля составляет один к миллиарду, а в случае «почти пустого» – один к десяти. Обнаружив себя в седьмом номере, я могу быть уверен, что в отеле вместе со мной проживают только 10 человек. Другими словами, в этом случае работает предписание (3), а не (4), а значит, формула (1) оказывается верной. Причина этого очевидна – если я в любом случае попадаю в реферируемую группу, то условные вероятности p (N|I) равны единице.
Осталось понять, что наша жизнь в мультиверсе сходна со стратегией 2, а не стратегией 1. Это почти очевидно: во‐первых, мы должны исключить из рассмотрения хаббловские объемы где нас нет, по той причине, что я непременно существую в других объемах и осознаю себя в них прямо сейчас. Во‐вторых, коль скоро при каждом выборе я могу считать себя попадающим в соответствующий хаббловский объем, то ситуация ничем не отличается от ситуации, где мое местонахождение определяется монетой богини. В обоих случаях ситуация случайна и находится вне моего контроля. Я не знаю, в каком хаббловском объеме окажусь в следующий момент (или, если угодно, не знаю, что произойдет в моем объеме в следующий момент), но точно знаю, что в одном из них окажусь обязательно. В этом смысле я могу считать себя выделенным. А это означает, что в мультиверсе Аргумент Doomsday – действует!
В силу необычности и важности этого заключения повторим его еще раз, но применительно к Аргументу Судного дня. Я знаю, что я N-й человек. Также я знаю, что это сейчас осознает множество моих двойников, обладающих той же памятью и видящих то же, что и я. Я не знаю, который из этих двойников «я». Часть из них живет в долгоживущей цивилизации, находясь у самого ее истока. Вторая часть живет в короткоживущей цивилизации и не занимает особого положения. Я могу оказаться любым из них, ибо они реально существуют. На что мне надо поставить: на то, что я оказался одним из избранных, стоящих у самого начала будущей «космической империи», или на то, что я живу в заурядной цивилизации, число людей в которой никогда не увеличится на порядки? Очевидно, что при таком раскладе несравненно более вероятен второй вариант.
Нам осталось ответить на приводимое выше первое возражение против Аргумента Doomsday, утверждающего его противоречивый характер: почему древние люди пришли бы к абсолютно неправильному заключению о будущем (2)? Напомним: древние люди, о которых речь шла во втором разделе, с вероятностью 0,999 983 должны были столкнуться с Судным днем до начала XXI в. Тем не менее они дожили до наших дней, породив нас, хотя вероятность этого была лишь 0,000 017. Как же так? Очень просто: в Мультиверсе существовало множество копий этих людей, сделавших это предсказание. Из них 99,9983% действительно имели несчастье исчезнуть в результате Судного дня и лишь 0,0017% уцелели. И это естественно, ибо Аргумент Doomsday носит статистический характер. Кому-то ДОЛЖНО было повезти, поскольку в Мультиверсе происходит все, что возможно (см. сноску 5). И поскольку я являюсь потомком этих людей, для меня вероятность существования этой крохотной доли счастливчиков, выигравших в лотерею жизни и смерти, равна 100%. Ситуация здесь та же самая, что и с «удачливым сперматозоидом»: допустим, что появление данной персоны зависит от того, оплодотворит ли ДАННЫЙ сперматозоид (один из 10 млрд) яйцеклетку. Очевидно, шансы появления чрезвычайно малы и составляют 10−10, т.е. при обычном раскладе ими можно пренебречь, если только ВЫ не эта персона. С ее же точки зрения это событие должно было непременно случиться (т.е. с вероятностью единица), иначе бы она вообще не думала на эту тему! Конечно, указанная персона могла бы сказать, что ее могло и не быть, и прийти к тому же заключению, что и сторонний наблюдатель. Однако это неверно в Мультиверсе, в котором происходят все события, разрешенные законами физики. В Мультиверсе обязательно найдется хаббловский объем, в котором именно этот сперматозоид оплодотворит яйцеклетку, а значит, появление этой персоны неизбежно. Далее, очевидно, что только появившись на свет (и, вероятно, окончив университет), персона будет способна задаться вопросом о вероятностном распределении, приведшем к ее существованию. Отсюда действительно, как ни странно, следует, что с точки зрения данной персоны вероятность ее появления равна 100%! Это не ошибка, не суждение задним числом и не обман. Именно это обстоятельство позволяет обосновать использование асимметричной стратегии каждым отдельным наблюдателем, применение которой неизбежно приводит к справедливости Аргумента Doomsday.