Литмир - Электронная Библиотека

Каким образом клетки, содержащие одинаковый геном, могут иметь разную форму и выполняют разные функции? Для этого должны синтезироваться разные белки, которые идут и на строительство клеток, и на ферментативные функции. Гены во всех клетках одинаковые, за исключением половых клеток. То есть, гены во всех клетках одинаковые, но при этом клетки имеют разную форму и разные функции. Это объясняется тем, что в каждой клетке работают не все гены, а только те, которые нужны в данный момент. Гены могут включаться и выключаться, то есть, как говорят, активироваться либо быть репрессированными (выключенными).

РНК-полимераза - это фермент, который считывает генетическую информацию с ДНК и синтезирует матричную РНК. В РНК-полимеразе есть х-фактор - белок, который распознает промотор и помогает РНК-полимеразе на него сесть и начать транскрипцию. Таким образом переключается работа больших групп генов, это такая системная регуляция. Клетка переключается с одной жизненной программы на другую. Очень большую роль во всех этих процессах играет циклический аденазинмонофосфат (цАМФ). Он - типичный регулятор внутриклеточного метаболизма. Такая система изменения активности аденилатциклазы и, соответственно, концентрации циклического АМФ в клетке, работают не только у бактерий, но и у очень многих организмов, в том числе и у нас с вами. Через аденилатциклазу, регулируя ее активность, действуют некоторые гормоны. Меняя концентрацию циклического АМФ, эти гормоны влияют на внутриклеточные процессы.

Интересно, что циклический АМФ используется не только для регуляции внутриклеточных процессов, но и для межклеточной коммуникации при формировании многоклеточности. Расскажем об этом на примере уникального организма - амёбы, которая называется Dictyostelium discoideum. Это одноклеточная амёба, которая живет в почве и питается бактериями. Иногда её относят к грибам.

Когда всё хорошо, амёбы диктиостелиума ползают по своему месту обитания, питаются и делятся время от времени. Но если они голодны, долго не попадалось хорошей еды и их энергозапасы начинают истощаться, они выпускают во внешнюю среду цАМФ, соседние клетки-амёбы этот сигнал воспринимают. Если клетки сыты, то они на него не реагируют, если же они голодны, то они начинают сползаться в кучу. Вначале они собираются небольшими группами, выпускают циклический АМФ, его концентрация становится больше, поэтому одиночные клетки-амёбы начинают к ним подползать, образуя агрегат клеток. В итоге к самой большой кучке сползаются остальные группы клеток, и они формируют единый многоклеточный организм, который называется псевдоплазмодий. Миллионы таких клеток собираются вместе и образуют огромную клеточную массу, сильно смахивающую на многоклеточный организм. Он способен ползать, и в отличие от амёбы, способен перемещаться на заметные расстояния. Эта масса передвигается и реагирует на свет и химические вещества, словно единое животное. Он с довольно заметной скоростью уползает из плохого места. Если ему удается переползти туда, где есть еда, то он опять распадается на отдельные клетки-амёбы, которые, как приличные одноклеточные амёбы, начинает питаться. Если же он ползёт - ползёт, а хорошая жизнь всё не наступает, то он останавливается, примерно 20% клеток ползут вверх, образуя жёсткий стебелёк, и затем отмирают (то есть, приносят себя в жертву всем остальным). По стебельку остальные клетки переползают на самую верхушку, образуют плодовое тело, в котором созревают споры. В конечном итоге слизевик предстаёт в виде плодоносящего тела, во многом похожего на спорангий какого-либо гриба. У него имеется высокая ножка с защитной внешней оболочкой, а сверху располагается мешочек со спорами. Они разбрасываются на некоторое расстояние вокруг, пережидают неблагоприятный период. Когда наступает хорошее время, они прорастают в амёбы, и вся история начинается заново.

Эта амёба не является ни одноклеточным, ни многоклеточным организмом. В её случае мы сталкиваемся с тем, что то, что можно наблюдать в живой природе, сложнее, чем придуманная людьми система классификации. Dictyostelium часть своей жизни одноклеточный, другую часть - многоклеточный, и он способен переходить из одной формы в другую, то есть, так просто его не классифицируешь. Он на стадии псевдоплазмодия имеет дифференцированные клетки. Его передний конец обладает хеморецепцией, он лучше всё чувствует, чем задний конец псевдоплазмодия. И образование плодового тела - это процесс уже ярко выраженной дифференциации, при которой 20 % клеток образует стебелёк и погибают. Размер генома Dictyostelium'a 3.5x107 bp. Мы можем назвать Dictyostelium факультативно многоклеточным.

Итак, благодаря тому, что не все гены работают в клетке одновременно, клетка может менять программу своей активности, образовывать разные ферменты и иметь разную форму. Это происходит как у одноклеточных, так и у многоклеточных. У многоклеточных регуляция ещё более сложная, так как помимо внутриклеточных процессов нужно регулировать ещё межклеточные взаимодействия. Но возникает вопрос, как вообще могли образоваться многоклеточные? Как исходно одноклеточные организмы превратились в многоклеточные? У практически всех одноклеточных известны мутанты, не расходящиеся при делении клетки. То есть нормальное деление клетки происходит, всё у нее делится: ядра делятся, митохондрии делятся, хлоропласты расходятся по разным дочерним клеткам, но последний этап, когда клетки должны отцепиться друг от друга, у них не происходит, они остаются сцепленными. У некоторых видов эти клетки-мутанты живут хуже, чем нормальные одноклеточные формы, потому что у них нет системы регуляции взаимодействия клеток. Но некоторые виды, видимо, приспособились к этому, эти клетки начинают взаимодействовать друг с другом, у них есть программа согласования своих действий. Нерасхождение при делении встречается не только на уровне одноклеточных, но и на уровне многоклеточных, (например, сиамские близнецы). Не всегда это является уродством, иногда это вариант нормы.

Есть такие черви, которые после деления не расходятся, а образуют временные линейные колонии. Если их друг от друга отделить, они будут дальше вполне комфортно жить. Такая колония может потом сама разделиться. Но происходит это не сразу, какое-то время черви живут все вместе.

Существуют колонии так называемых гидроидных полипов. Напомним, что гидра относится к типу Кишечнополостных, подцарство Metazoa. Тело гидры имеет вид удлиненного мешочка. Его внутренность - кишечная полость - сообщается с внешней средой через ротовое отверстие, окруженное несколькими щупальцами. Стенки мешочка состоят из двух слоев клеток: внутреннего (энтодерма) и внешнего (эктодерма). И в эктодерме, и в энтодерме много мышечных клеток, содержащих волоконца, которые могут сокращаться, приводя тело гидры в движение. Кроме того, в эктодерме есть и нервные клетки, причем клетки, расположенные ближе всего к поверхности, - это рецепторы, а клетки, заложенные глубже, среди мышц, - эффекторы. Если к гидре прикоснуться иглой, она сжимается в комочек. Это простой рефлекс, вызванный передачей возбуждения от рецепторов к эффекторам. Но гидра способна и к гораздо более сложному поведению. Захватив добычу, она подтягивает её щупальцами к ротовому отверстию и заглатывает.

Такое строение имеют и остальные представители кишечнополостных. Многие виды кишечнополостных образуют колонии. Колония животных - гидроидных полипов, с виду похожа на растение. Каждый "листочек" такого "растения" имеет такое же строение, как гидра.

Жизненный цикл у некоторых из гидроидных полипов проходит следующим образом: полипы растут вместе, они объединены общим проводящим каналом, время от времени некоторые из них отрываются, превращаются в медуз (принципиальное строение гидры и медузы одинаковое), которые уплывают и активно размножаются, проходят определенные стадии, образуют половые клетки, которые, сливаясь, дают зиготу, из которой вырастает новый полип. И снова весь цикл повторяется.

Известные нам красивые кораллы - это скелет коралловых полипов. Полипы - похожие на гидру существа, у которых есть общий проток воды по общим объединяющим их каналам, они строят для себя известковый скелет. У некоторых этот скелет включает в себя соединения железа, которые окрашивают его в красивый красный цвет. Коралловые полипы живут в море.

8
{"b":"619087","o":1}