Литмир - Электронная Библиотека

Представьте профессора Нортона, стоящего перед большой аудиторией и пытающегося рассуждать об искусстве, – строгий костюм, пышные усы, бакенбарды, редеющие волосы. Студенты сначала услышат звук, который идет непосредственно от профессора к их ушам – по прямой, по кратчайшему пути. Но за ним сразу же следуют отражения – звук, отразившийся от стен, сводчатого потолка, столов и других твердых поверхностей.

Эти отражения и определяют архитектурную акустику – то есть как люди воспринимают звук в помещении. Инженеры воздействуют на акустику, меняя размер, форму и планировку помещения. Вот почему мои коллеги акустики испытывают непреодолимое желание хлопнуть в ладоши и послушать, как отражается звук. (Моя жена пришла в ужас, когда я хлопнул в ладоши в крипте французского собора. Наверное, это один из самых необычных способов смутить супруга.) Хлопнув в ладоши, я слушаю, как долго затухают отражения. Если для угасания звука требуется много времени – время реверберации слишком велико, – то речь в таком помещении будет невнятной, поскольку соседние слова накладываются друг на друга и сливаются в одно. Как писал в XIX в. Генри Мэтьюз, реверберация «не станет вежливо ждать, пока оратор закончит; с момента начала и до самого конца речи она высмеивает его десятью тысячами языков»[15]. Именно это и происходило, когда профессор Нортон пытался прочесть лекцию. Студенты могли острить, что большинство лекций недоступно для понимания даже при хорошей акустике, но профессор Нортон был блестящим оратором и опытным преподавателем. В данном случае виновата была действительно аудитория, а не лектор.

В просторных помещениях с твердыми поверхностями, таких как соборы, мавзолей Гамильтона или похожий на пещеру лекционный зал в Музее Фогга, отражения слышны продолжительное время. Мягкие поверхности поглощают звук, уменьшая отражение и ускоряя затухание звука. Уоллес Сэбин экспериментировал с мягкими, звукопоглощающими материалами в лекционном зале – со стороны он выглядел как экзальтированный любитель подушек. Сэбин взял 550 метровых мягких сидений из соседнего кинотеатра и постепенно переносил их в лекционный зал Музея Фогга, чтобы проверить, что произойдет. Ему требовалась тишина, и поэтому он работал по ночам, когда студенты уходили домой, а на улицах прекращалось движение. Он измерял время полного затухания звука, но не хлопал в ладоши – непрерывно хлопать могут только профессиональные исполнители фламенко, – а использовал звук органной трубы.

Время до полного затухания звука Сэбин назвал временем реверберации, и в результате его работы появилось одно из главных уравнений акустики. Оно устанавливает связь между временем реверберации и размерами помещения, измеряемыми как физический объем, а также количеством звукопоглощающих материалов, таких как мягкие сиденья из экспериментов Сэбина или слой фетра дюймовой толщины, который он в конечном итоге использовал для облицовки стен лекционного зала, чтобы исправить его акустику. Одно из главных решений, которые принимают инженеры при проектировании помещения с хорошей акустикой – большой аудитории, зала судебных заседаний, офиса с открытой планировкой, – это желаемая длительность реверберации. После этого они могут использовать уравнение Сэбина, чтобы вычислить необходимое количество мягкого, звукопоглощающего материала[16].

Кроме времени реверберации, проектировщик должен учитывать частоту, которая напрямую связана с воспринимаемой высотой звука. Когда скрипач проводит смычком, струна ведет себя как крошечная скакалка, описывая круги. Если скрипач берет ноту, которую музыканты называют средним до, струна делает 256 оборотов в секунду. Вибрация скрипки посылает во все стороны 256 звуковых волн каждую секунду – с частотой 256 герц (Гц). Эта единица измерения была названа в честь Генриха Герца, немецкого физика XIX в., который первым научился излучать и принимать радиоволны. Самая низкая частота, которую может слышать человек, составляет около 20 Гц, а самая высокая (у молодых людей) – 20 000 Гц. Но наибольшее значение имеют частоты, расположенные в середине диапазона. Рояль издает звуки частотой от 30 до 4000 Гц. За пределами этого диапазона мы уже с трудом различаем высоту звука, и все ноты становятся похожими друг на друга. Выше 4000 Гц мелодии превращаются в бессмысленный свист человека, лишенного музыкального слуха. Наше ухо эффективнее всего усиливает и различает звуки на средних частотах, в диапазоне музыкальных нот. В этот диапазон попадает и речь, и поэтому при проектировке залов, предназначенных для исполнения музыки, акустические инженеры в своих расчетах используют частоты от 100 до 5000 Гц.

В 2005 г. Брайан Кац и Эварт Уэтерил применили компьютерные модели для оценки эффективности мер Сэбина в Музее Фогга. Они ввели в программу размер и форму лекционного зала и использовали уравнения, описывающие, как звук распространяется по помещению и отражается от поверхностей и объектов. Затем они добавили виртуальные звукопоглощающие материалы к модели зала, чтобы сымитировать действия Сэбина. Хотя акустика улучшилась, в некоторых местах речь по-прежнему оставалась плохо различимой. По словам одного из студентов, в зале были как места, где они хорошо слышали лектора, так и «мертвые зоны, в которых зачастую ничего невозможно было разобрать»[17]. Хотя результат получился далеким от совершенства, эксперименты Сэбина заложили основу для разнообразных акустических исследований. Его уравнения и сегодня составляют фундамент архитектурной акустики.

Мне нравится приходить в концертный зал и чувствовать контраст между маленьким холлом и огромным пространством самого зала. Из тесного прохода вы попадаете в просторное помещение, слушая тихие, исполненные ожидания разговоры и редкие громкие звуки, вызывающие мощную реверберацию. Особое волнение я испытываю, переступая порог симфонического зала в Бостоне. Бостонский симфонический зал – Мекка для многих акустиков, поскольку именно там Уоллес Сэбин применил свою новую науку, чтобы спроектировать аудиторию, которая до сих пор входит в тройку лучших в мире мест для исполнения классической музыки. Зал, построенный в 1900 г., имеет форму обувной коробки – длинный, высокий и узкий – с шестнадцатью копиями греческих и римских статуй, установленных в нишах над балконами. Обычно я устраиваюсь на одном из скрипучих кресел, обтянутых черной кожей, и слушаю, как настраивают инструменты музыканты Бостонского симфонического оркестра, расположившиеся на приподнятой сцене перед позолоченным органом. При первых же звуках музыки я понимаю, почему публика и критики так любят это место. Зал превосходно украшает и обогащает музыку – время реверберации в нем составляет 1,9 секунды[18]. Когда после умеренно громкого пассажа оркестр умолкает, для полного затухания звука требуется около 2 секунд.

Во время концерта на открытом воздухе оркестр может играть под навесом, в то время как зрители наслаждаются пикником. Нередко вечер заканчивается шампанским и грохотом фейерверка в небе. Это приятные концерты, но оркестр звучит тихо, как будто издалека. В хороших залах, таких как в Бостоне, музыка, наоборот, заполняет все помещение и окружает слушателей со всех сторон. Реверберация усиливает звучание оркестра, которое становится более громким и впечатляющим. Реверберация помогает получить богатый и яркий звук. Современный дирижер Адриан Боулт говорит: «Идеальным концертным залом, очевидно, является тот, в котором оркестр производит не слишком приятный звук, а слушатели получают нечто прекрасное»[19].

Преобразующий эффект реверберации не ограничен классической музыкой; он активно используется в поп-музыке. В 1947 г. популярный хит Peg o’ My Heart (медленная инструментальная музыка, исполнявшаяся на гигантских губных гармониках) группы Jerry Murad’s Harmonicats стал первой записью, в которой творчески использовалась реверберация[20]. С тех пор «искусственное эхо» составляет неотъемлемую часть инструментария музыкального продюсера. Оно делает голоса богаче и сильнее, подобно тому, что происходит во время выступления на сцене театра. Во многих телевизионных программах, когда петь пытаются люди со слабым голосом, можно услышать, как после первой же ноты инженеры звукозаписи на полную мощность включают реверберацию, чтобы спасти звук.

вернуться

15

Beyer R. T. Sounds of Our Times: Two Hundred Years of Acoustics. N. Y.: Springer, 1998. Оригинал появился в Mathews H. Observations on Sound (publisher unknown, 1826).

вернуться

16

Иногда требуется изменить и физический объем. При проектировании концертных залов используется эмпирическое правило – не менее 10 кубических метров на одно место.

вернуться

17

Эта цитата датируется 1972 г., после чего была проведена дальнейшая реконструкция лекционного зала. Katz B. F.G., Wetherill E. A. Fogg Art Museum lecture room: A calibrated recreation of the birthplace of room acoustics. (Доклад был представлен на Акустическом форуме в Будапеште 29 августа – 2 сентября 2005 г.) В 1973 г. зал снесли, а на его месте построили студенческое общежитие.

вернуться

18

Значение для заполненного зала и средних частот.

вернуться

19

Цитата из Beranek L. L. Music, Acoustics & Architecture. Hunting, NY: Krieger, 1979, где в замечательной первой главе приведены некоторые мифы об акустике концертных залов.

вернуться

20

Doyle P. Echo and Reverb: Fabricating Space in Popular Music, 1900–1960. Middletown, CT: Wesleyan University Press, 143.

5
{"b":"616659","o":1}