2. Тема должна содержать проблему методического исследования, т. е. отражать решение одного из актуальных, современных вопросов обучения, перспективы его развития, специфику авторского подхода.
В связи с этим рассмотрим следующий пример: «Геометрия Лобачевского». Бесспорно, очень эффектное и красивое название, в нём есть своеобразная изюминка. Это хорошее название, но не для научного исследования, скорее для статьи, книги, учебника. Какую актуальную проблему методики предлагается разрешить в этой работе? Есть прекрасные книги, в частности: Прасолов, В. В. Геометрия Лобачевского. – М.: МЦНМО, 2000; Атанасян, Л. С. Геометрия Лобачевского. – М.: Просвещение, 2001 и т. п.
Другой пример: «Расширение понятия числа». Из такого названия совсем неясно, какая же методическая проблема рассматривается в данной работе, каковы её цель и назначение.
Ещё несколько неудачных, с этой точки зрения, формулировок тем научно-методических исследований.
Развитие логического мышления учащихся на уроках математики.
Формирование познавательного интереса школьников при обучении математике.
Обучение элементам наглядной геометрии.
Преподавание темы «Прогрессии».
Курс по выбору «Теорема Эйлера и её приложения» и т. п.
III. Тема не должна быть «широкой», она не должна носить общий характер.
Приведём конкретные примеры.
1. Формирование универсальных учебных действий при обучении в основной школе.
Что здесь имеется в виду? Этой теме посвящена известная книга «Формирование универсальных учебных действий в основной школе: от действия к мысли» (под ред. А. Г. Асмолова. – 2-е изд. – М.: Просвещение, 2011). Это фундаментальное исследование авторского коллектива, в котором изложены методология и модель программы развития универсальных учебных действий. На основе этого определены функции, содержание универсальных учебных действий, дана их общая характеристика и способы их формирования в образовательном процессе.
2. Основы личностно-ориентированного образования.
Существуют разные модели формирования личностно-ориентированного обучения, в том числе и по математике. Что предлагается исследовать? Возможно, структуру развивающейся личности обучающихся, или организацию индивидуальной траектории развития, или ценности, цели, задачи личностно-ориентированного образования. Имеется серьёзная работа И. С. Якиманской, которая так и называется «Основы личностно-ориентированного образования» (М.: БИНОМ. Лаборатория знаний, 2011).
3. Развитие мышления школьников при обучении математике.
В этом названии, по сравнению с первыми, уточнено, об обучении какому предмету идёт речь. Но возникает другой вопрос: «О каком мышлении рассуждает автор: активном, продуктивном, самостоятельном, творческом или математическом, пространственном, логическом, образном и т. п.?»
4. Интеллектуальное воспитание на уроках геометрии.
Это название скорее подходит для фундаментального труда. Имеется, например, монография Л. И. Боженковой «Интеллектуальное воспитание учащихся при обучении геометрии» (Калуга: Изд. КГПУ им. К. Э. Циолковского, 2007).
5. Деятельностный подход в обучении математике.
Это название тоже больше соответствует монографическому труду, например: Епишева, О. Б. Технология обучения математике на основе деятельностного подхода. – М.: Просвещение, 2003; Хуторской, А. В. Системно-деятельностный подход в обучении. – М.: Эйдос; Издательство Института образования человека, 2012.
Выбор указанных тем свидетельствует о непонимании авторами всего комплекса вопросов, входящих в исследование поставленной перед ними проблемы.
6. Тестовый контроль в обучении математике.
При такой формулировке, думаю, что автору будет трудно определить предмет своего исследования, сориентироваться на его частных задачах, и в конечном итоге будет невозможно провести на должном уровне положенные этапы методического исследования. Таким образом, возникает ещё одно важное требование к формулировке темы исследования.
IV. Тема должна иметь конкретный характер.
В определении «конкретного характера» подразумевается включение в тему трёх следующих важных компонентов, о которых речь шла выше. Напомним их: 1) возрастная группа учащихся; 2) предмет; 3) форма занятий; 4) уровень освоения; 5) профиль обучения.
Рассмотрим, например, следующую формулировку: «Методика решения задач на построение с помощью одного циркуля». Из данного названия совершенно неясно, с какими классами предлагает автор решать названные задачи. Кроме этого, данная тема не входит в обязательную школьную программу по математике. Возникает естественный вопрос о том, для каких занятий предназначен рассматриваемый учебный материал: основных уроков, внеурочных занятий или, может быть, автор разрабатывает курс по выбору по предлагаемой проблематике.
Другая тема: «Особенности обучения математике в старших классах». Здесь явно указаны классы, для которых проводится исследование, но о каких особенностях идёт речь в работе: возрастных, педагогических, психологических, методических, может быть, связанных с профильным обучением на старшей ступени общего образования, – остаётся непонятным. Нереально вскрыть и проанализировать всевозможные особенности в рамках одного исследования. Эта тема, как и предыдущая, требует своего уточнения и конкретизации.
Ещё одна тема: «Образовательные технологии при обучении математике в школе». В данном случае остаётся невыясненным вопрос, о каких именно новых современных технологиях обучения идёт речь. В настоящее время, по самым скромным подсчётам, их приблизительно двадцать, причём в каждой имеется ещё по несколько модификаций, и это не считая ИКТ.
Приведём примеры тем исследований по методике обучения математике, отвечающих выдвинутому требованию.
– Методика формирования познавательных универсальных учебных действий при обучении алгебре в основной школе.
– Методика преподавания темы «Многоугольники» в условиях уровневой дифференциации обучения.
– Методика преподавания темы «Многогранники» в условиях профильной дифференциации обучения.
– Методика проведения предметного курса по выбору «Кривые и связанные с ними вопросы» в условиях предпрофильной подготовки учащихся основной школы.
– Методика проведения предметного курса по выбору «Сферическая геометрия» для учащихся естественно-математического профиля обучения.
– Методика решения уравнений с параметрами на занятиях математического курса по выбору на старшей ступени общего образования.
– Методика проведения математического кружка по наглядной геометрии с учащимися 5–6 классов.
– Нестандартные задачи по алгебре как средство организации исследовательской деятельности учащихся основной школы.
– Методика организации проектной деятельности учащихся при обучении геометрии в 10–11 классах.
– Методика преподавания темы «Окружность и круг» систематического курса геометрии в условиях реализации компетентностного подхода к обучению.
Хотя в этом последнем названии прямо не указаны представленные компоненты, они легко определяются из явного указания темы школьного курса, которая изучается в 7–9 классах на уроках планиметрии. Из понятия «систематический курс» непосредственно следует, что данное исследование относится к основным урокам геометрии.
– Методика преподавания темы «Показательная и логарифмическая функции», основанная на системно-деятельностном подходе к обучению.
Эта тема изучается, как правило, в старших классах (вне зависимости от профильной ориентации обучения) на уроках по алгебре и началам математического анализа. Поскольку в названии не уточнено, для какой формы занятий проводится данное исследование, в нём должны быть представлены учебные материалы для основных уроков, так как данная тема относится к обязательному школьному курсу математики. Кроме этого, работа с таким названием допускает включение в её содержание главы, посвящённой курсу по выбору или материалам повышенной трудности по данной проблеме. Обратное неверно. Другими словами, исследование с таким названием не предполагает методику преподавания данной темы только на курсах по выбору или внеурочных занятиях по математике.