В результате этих противоположных определений точка, с одной стороны, является границей (это в ней от единого, оно же предел), а с другой - может безгранично двигаться (беспредельное), порождая линию. Очень характерны в этом отношении те определения, которые дает точке Прокл в комментариях к Евклиду. Говоря о том, что точка - это монада, наделенная положением, Прокл замечает, что благодаря этой наделенности положением она Щn fantasЕa proteinetai (простирается в воображении), а потому точка Ьnul'n Щsti kat? t?n noht?n ?lhn (оматериалена через интеллигибельную материю) и в этом смысле есть нечто swmatoeidhV (теловидное).
Перейдем к двойке. Что будет с двойкой, если она соединится с интеллигибельной материей - пространством? Двойка - это "единое и иное", это начало различия, когда единое перестает быть абсолютно единым и вступает в контакт с иным. Строго говоря, когда единица становится пространственной, т.е. вступает в контакт "с положением", а значит, с "иным", чем она сама, она уже двойка. И действительно, со стороны того определения, которое она получает от этого контакта, от "положения" (пространственности), она есть движущееся; а движущаяся точка - это линия. (Правда, не будем забывать, что со стороны первого своего определения единицы - точка есть граница, т.е. нечто устойчивое, неподвижное, закрепляющее.)
Но можно провести рассуждение и иначе. Если взять двойку не со стороны "материи" (движущаяся точка), а со стороны ее числово-идеального "отца", то она есть две единицы. Две единицы, соединившиеся с пространством (т.е. с положением), будут двумя точками. Линия со стороны числа, т.е. своего логического, а не пространственного происхождения, определяется через "две точки". Таково ее определение у Евклида: "Концы же линии - точки" (кн. I, определение 3). Вот почему среди греческих математиков само собой разумелось, что линия - это двойка. Через двойку далее можно определять линию не только логически, но и "в воображении", т.е. погружая "двойку" в "интеллигибельную материю"; такое определение, однако, в отличие от первого будет включать в себя движение (cЕnhsiV fantastic ), а потому будет не логическим определением, а требованием осуществить некоторое действие постулатом. Первый постулат Евклида гласит: "Требуется, чтобы можно было через всякие две точки провести прямую".
Займемся теперь тройкой. В сущности, тройка у Платона является первым числом: ведь единица и "неопределенная двоица" - это скорее "начала" чисел, чем сами числа. Тройка же представляет собой единство единицы и двойки, т.е. начала ограничивающего и безгранично-неопределенного. Двойка, выражающая начало "различия", соединившись с материей-пространством, предстает как линия, неограниченно продолжающаяся в обе стороны. У двойки, как мы знаем еще из разбора пифагорейской математики, нет "середины", которая "удержала" бы ее "концы", "скрепила" бы их друг с другом. В тройке эта середина налицо, а потому тройка - нечетное число - устойчива и довлеет себе. Но как в пространстве соединяется двойка-линия с единицей-точкой? Возьмем точку вне прямой и соединим ее отрезками с концами прямой; тем самым мы произведем операцию в пространстве, аналогичную соединению трех единиц или двойки и единицы. В результате мы получим новый геометрический объект - треугольник. (Построение правильного, т.е. равностороннего треугольника на данной ограниченной прямой, или операция нахождения точки, равноотстоящей от двух других точек ("концов" прямой) - первая теорема I книги "Начал" Евклида.)
В результате соединения точки с прямой (единицы с двойкой в пространстве) прямая больше уже не может неограниченно продолжаться в обе стороны: третья точка "держит" оба ее конца. Как "тройка" - первое настоящее число, так и треугольник - первая пространственная фигура: точка и линия - это элементы, "начала", из которых строятся геометрические фигуры.
При этом "переведении" чисел в пространство каждое новое число представляет пространственный элемент нового измерения: единица не имеет измерений ("не имеет частей"); двойка имеет одно измерение - "длину без ширины" ("Начала" Евклида, кн. I, определение 2); тройка имеет два измерения - длину и ширину. Треугольник, таким образом, есть "первая" (не во временн(м, а в логическом смысле) плоскость, ибо тройка означает два измерения.
Наконец, четверка, соединившись с "материей" пространства, даст в результате три измерения. Если возьмем точку, лежащую вне нашего треугольника, и соединим ее с вершинами последнего, то получим уже трехмерное тело - пирамиду (тетраэдр), которая будет парадигмой, образцом объемных образований, "первым телом" опять-таки в логическом плане. Подобно тому как идеи у Платона являются идеальными образцами чувственных вещей, точно так же треугольник и пирамида являются у него промежуточными - не идеальными, но и не чувственно-телесными - образцами всех двухмерных (плоскостных) и трехмерных (объемных) объектов. И если мы будем называть это "промежуточное" начало, эту "интеллигибельную материю" пространством, то, стало быть, треугольник - это "первая", исходная, элементарная "клеточка" тела.
Но это не значит, что плоскость "складывается" из треугольников наподобие того, как одеяло сшивается из лоскутов. Отношение "образца" к тому, образцом чего оно является, иное, чем отношение атома к составленным из атомов телам. Как писал неоплатоник эпохи Возрождения Марсилио Фичино, "при построении правильных тел из элементарных треугольников имеется в виду не столько слагать их, сколько сравнивать друг с другом (comparanda haec inter se potius quam componenda)".
Итак, относительно онтологического статуса геометрических объектов мы можем теперь сказать следующее: Платон исходит из различения трех видов реальности. "Есть бытие, есть пространство и есть возникновение". "Бытие" это сфера идеального, куда Платон относит и числа; все идеальное постигается умом, и о нем возможно истинное знание - эпист(ме. "Возникновение" - это сфера чувственного "бывания", она дана чувственному восприятию, и о ней возможно иметь лишь мнение в его двух видах - веры и уподобления. "Пространство" - это нечто такое, что нельзя назвать ни идеальным в строгом смысле, ни чувственным; оно смутно и неопределенно, познается с помощью "незаконнорожденного рассуждения", т.е. воображения, как позднее определил Прокл. Объекты геометрии, однако, связаны с этим промежуточным родом бытия, хотя и не определяются только им одним. Поскольку они "воображаются", т.е. поскольку точка "движется" в воображаемом пространстве, они определяются этим последним. Поскольку же всякий геометрический объект (треугольник, квадрат, круг и т.д.) представляет собой некоторое число или числовое отношение, постольку он определяется не через пространство, а идеально, логически. Геометрические объекты, стало быть, тоже можно рассматривать как "гибриды": в них логическое оказывается "сращенным" с некоторого рода "материей", а именно с пространством.
Поскольку, однако, точка, линия, треугольник, пирамида и т.д. - это воплощенные идеальные образования, постольку они неделимы. Отсюда учение платоников не только о неделимых точках, но и о неделимых линиях, неделимых треугольниках или, что то же самое, неделимых поверхностях. "Разделить" точку, "первую" линию, "первый" треугольник - это все равно, что "разделить" понятие тождества, различия или "единства различных", ибо именно таковы "понятия" точки, линии и плоскости. О "делении" применительно к этим первым элементам можно, согласно платоникам и пифагорейцам, говорить только в одном смысле, а именно в смысле уменьшения числа измерений. Так, например, в результате "разделения" треугольника, т.е. плоскости, получим не плоскости, меньшие по своей величине, а линию; в результате деления линии - не все меньшие линейные отрезки, а точку. В этом состоит различие между платоновским и демокритовским пониманием неделимого. Согласно Демокриту, при делении тела мы получаем в конце концов далее неделимые элементы того же измерения, что и само тело.