Литмир - Электронная Библиотека

В то же время выяснилось, что новые технологии выделения древней ДНК приложимы в неожиданных областях биологии. В один прекрасный день у меня на пороге появился университетский зоолог Феликс Кнауэр и завел разговор о применении наших ДНК-методик к “охранной генетике”, то есть в той области знаний, где генетика служит сохранению редких и исчезающих видов. Феликсу предстояло исследовать последнюю сохранившуюся популяцию итальянских медведей, обитающих на южных альпийских склонах, но в качестве материала для исследования у него был только медвежий помет. Я предложил Феликсу и нескольким студентам попробовать наш метод “кремниевого” выделения в сочетании с ПЦР на этом специфическом материале. В результате мы сумели амплифицировать ДНК медведя и показали, что можно работать и с таким материалом. До этого, чтобы получить ДНК дикого животного, его приходилось убивать или усыплять и брать кровь у сонного, что рискованно и для животного, очевидно, неприятно. Теперь же можно изучать генетические связи итальянского медведя и его европейских сородичей без всяких сложностей. Из того же материала мы реконструировали генетическую составляющую растений, которые шли медведю в пищу, так что и о медвежьей диете кое-что смогли рассказать. Все эти результаты мы опубликовали в небольшой статье в Nature[22]. С тех пор выделение ДНК из помета стало повсеместной практикой в области генетики редких животных.

Пока мы корпели над методиками распознавания и устранения занесенных чужеродных ДНК, в Nature и в Science одна за другой появлялись эффектные работы – их авторы будто бы добивались грандиозных успехов, рядом с которыми бледнели наши вымученные фрагменты ДНК возрастом в какие-нибудь несчастные пару десятков тысяч лет. Мода на такие работы началась году в девяностом, я тогда еще работал в Беркли. Ученые из Калифорнийского университета в Ирвайне опубликовали ДНК-последовательность ископаемой Magnolia latahensis из миоценовых отложений в Айдахо; возраст отложений составлял 17 миллионов лет[23]. Прямо ошеломительное открытие, и казалось, что теперь мы можем изучать эволюцию в невиданных масштабах в миллионы лет – так, пожалуй, и до динозавров недолго добраться! Но я, по правде сказать, был настроен скептически. Еще в 1985 году, когда работал у Томаса Линдаля, я на собственном опыте убедился, что фрагменты ДНК могут сохраниться спустя тысячи лет, но о миллионах даже речи не идет. Мы с Аланом Уилсоном произвели на основе работ Линдаля некоторую экстраполяцию, в которой проверили длительность жизни ДНК в присутствии воды и при усредненных условиях: при температурах не самых низких и не самых высоких, если среда не слишком щелочная и не слишком кислая. По нашим подсчетам выходило, что по прошествии нескольких десятков тысяч лет – а при самых благоприятных условиях, положим, и сотен тысяч – распадутся последние молекулы. Но кто знает – возможно, те отложения в Айдахо создавались при каких-то уж совсем исключительных условиях. Перед тем как отправиться в Германию, я посетил эти местонахождения. Они были сложены темными глинами, раскопки производились бульдозером. Первые же снятые слои обнажили зеленые листья магнолии, которые мгновенно почернели, оказавшись на воздухе. Я собрал много этих листьев и привез с собой в Мюнхен. В своей новой лаборатории я попытался выделить их ДНК и получил множество длинных фрагментов. Но далее, прогнав их через ПЦР, мне не удалось амплифицировать ни одного фрагмента растительной ДНК. Поскольку у меня было подозрение, что все длинные фрагменты последовательности принадлежат бактериям, а не растениям, я провел реакцию с бактериальными праймерами – и немедленно получил положительный результат. Очевидно, в глине развивались бактерии. Единственное возможное объяснение: группа из Ирвайна, работающая с генами растений и не имеющая специальной “чистой комнаты” для исследования древних ДНК, амплифицировала какую-то занесенную ДНК и решила, что это ДНК магнолии. В 1991 году мы с Аланом опубликовали наши теоретические подсчеты в статье о стабильности ДНК[24], а в следующей статье описали мои неудачные попытки получить ДНК из ископаемых листьев из Айдахо[25]. За год до того Алан слег с тяжелой формой лейкемии, так что настроение было очень печальное. Несмотря на болезнь, он внес весомый вклад в обе статьи. Он умер в июле того же года в возрасте всего пятидесяти пяти лет.

Я наивно полагал, что наши работы, где прямо указано на невозможность сохранения ДНК в течение миллионов лет просто с химической точки зрения, прекратят поток изысканий супердревних ДНК. Как бы не так! Поток мало того что не прекратился – листья из Айдахо были только началом! Затем настало время супердревних ДНК из янтаря. Янтарь представляет собой смолу деревьев, образовавшуюся миллионы лет назад и застывшую в виде прозрачных золотистых кусков. Больше всего янтаря находят в карьерах Доминиканской Республики и по берегам Балтийского моря. Часто в янтаре оказываются заключены насекомые, листики, даже мелкие животные – древесные лягушки, например. Такие включения сохраняют для нас мельчайшие детали организмов, живших миллионы лет назад, и многие ученые надеялись, что, может быть, их ДНК сохранились тоже. Одна из первых работ на эту тему появилась в 1992 году в Science; группа из Американского музея естественной истории предлагала нашему вниманию последовательность ДНК, которую выделили из термита возрастом 30 миллионов лет. Термит застыл в куске доминиканского янтаря[26]. Далее последовала целая серия работ от лаборатории Рауля Кано из Политехнического университета штата Калифорния в Сан-Луис-Обиспо. Одна из них исследовала ДНК долгоносика возрастом 120–135 миллионов лет из ливанского янтаря[27]; еще одна предлагала ДНК листа из застывшей смолы доминиканского дерева возрастом 40 миллионов лет[28]. Кано после этого основал компанию, которая утверждает, что извлекла более тысячи двухсот организмов из янтаря и среди них даже девять штаммов живых дрожжей. Утверждения, конечно, диковинные, но, казалось, нельзя полностью исключать возможность сохранения ДНК в янтаре необыкновенно долго, так как организмы там защищены от влаги и кислорода, двух самых разрушительных для химии ДНК факторов. Тем не менее янтарь необязательно предохраняет ДНК от разрушительных свойств радиации; к тому же трудно объяснить, почему нам понадобились такие отчаянные усилия, чтобы амплифицировать следы ДНК из организмов в тысячи раз моложе.

Вопрос стал проясняться, когда в 1994 году к нам в лабораторию прибыл веселый калифорниец Хендрик Пойнар. Его отец, Джордж Пойнар, профессор в Беркли, являлся знатоком янтаря и всего, что в янтаре могло быть захоронено. Вместе с Кано Хендрик участвовал в публикациях нескольких “янтарных” последовательностей ДНК; его отец имел доступ к лучшему янтарю в мире. В Мюнхене Хендрик принялся за свои опыты в нашей “чистой комнате”, но безрезультатно. Он не мог воспроизвести то, что получил в Сан-Луис-Обиспо. Более того, если его контрольные вытяжки оказывались чистыми, то и из янтаря не удавалось выделить вообще никакой ДНК, независимо от того, проводил он опыты на растениях или насекомых. Сомнений у меня появлялось все больше и больше. И не только у меня. Томас Линдаль, который еще со времени моей стажировки у него в 1985 году живо интересовался палео-ДНК, опубликовал в Nature внушительный обзор о стабильности и распаде ДНК; часть этого обзора он посвятил древней ДНК[29]. Он указал – как и мы с Аланом ранее, – что с крайне малой вероятностью ДНК сохранится дольше нескольких сотен тысяч лет. Тем не менее вопрос о сохранности ДНК в янтаре он оставил открытым. Я же, со своей стороны, не надеялся уже и на янтарь.

вернуться

22

M. Höss et al. Excrement analysis by PCR. Nature 359, 199 (1992).

вернуться

23

E.M. Golenberg et al. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344, 656–658 (1990).

вернуться

24

S. Pääbo and A.C. Wilson. Miocene DNA sequences – a dream come true? Current Biology 1, 45–46 (1991).

вернуться

25

A. Sidow et al. Bacterial DNA in Clarkia fossils. Philosophical Transactions of the Royal Society B 333, 429–433 (1991).

вернуться

26

R. DeSalle et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257, 1933–1936 (1992).

вернуться

27

R.J. Cano et al. Enzymatic amplification and nucleotide sequencing of DNA from 120–135- million-year-old weevil. Nature 363, 536–538 (1993).

вернуться

28

H.N. Poinar et al. DNA from an extinct plant. Nature 363, 677 (1993).

вернуться

29

T. Lindahl. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

16
{"b":"595259","o":1}