Большинство приемно-усилительных радиоламп, применявшихся в массовых радиоустройствах (радиоприемники и телевизоры) в 1930-1950-е годы, представляли собой полые стеклянные баллоны диаметром 2-3 см и длиной около 6 см и имели стандартный электрический разъём – октальный цоколь. Их изготовление осуществлялось по так называемой «гребешковой технологии». Собранная арматура лампы (гибкие выводы и несущие траверсы) заваривалась в специальную стеклянную ножку. Ножка вваривалась в стеклянный баллон, а из «юбки» баллона формовался плоский «гребешок», в который вторично заваривались длинные гибкие выводы от электродов. Затем эти выводы приваривались к штырькам разъёма.
Предназначение радиолампы – создание потока электронов, перемещающихся от разогретого катода к аноду, и управление этим потоком. Чтобы на своем пути электроны не сталкивались с молекулами воздуха, в баллоне лампы создавали высокий вакуум. Воздух из лампы откачивали насосом, и давление понижалось до одной тысячной миллиметра ртутного столба. Часть молекул воздуха оставалась и, чтобы их удалить, перед созданием вакуума в баллоне лампы на никелевой пластине помещали вещество, активно поглощающее газы. Понизив давление внутри лампы, её запаивали и размещали возле высокочастотной катушки. От этого в веществе, поглощающем газы, наводились токи, которые раскаляли его, и оно испарялось. Вот эти-то пары, поглотив газы, оседали на внутренних стенках баллона лампы, отчего часть стекла становилась непрозрачна.
После окончания I мировой войны радиотехника выделяется в самостоятельную инженерно-техническую дисциплину, предмет исследования которой – колебательные и связанные контуры, фильтрующие цепи, усилители низкой, промежуточной и высокой частоты, модуляторы, детекторы, мультивибраторы, генераторы, ограничители, линии задержки и т. д. Небольшие заводские лаборатории GE, AT&T и других ведущих американских электротехнических компаний превращаются в крупные научно-исследовательские центры с многотысячными коллективами ученых, инженеров, техников и вспомогательного персонала. В 1907 г., когда де Форест обратился за патентом на триод, персонал лаборатории GE в Скенектеди (штат Нью-Йорк) насчитывал 40 ученых и инженеров и 55 технических работников. В 1918 г. персонал лаборатории GE состоял из 3 тыс. человек.
Прогресс в использовании радиоприемных устройств дал возможность в 1920 г. открыть первую радиовещательную станцию в США (г. Питсбург). В 1921 г. заработала первая радиовещательная станция во Франции. С помощью передатчика мощностью 5 кВт, установленного на Эйфелевой башне, на волне 2600 м передавались новости, сообщения о погоде и сигналы точного времени. В 1922 г. была создана Британская Вещательная Компания (British Broadcasting Company – BBC). В 1923 г. вступила в эксплуатацию московская радиостанция имени Коминтерна с передатчиком мощностью 12 кВт. Станция работала на волне 3000 м., и была рассчитана на прием ее вещания «революционным пролетариатом европейских стран». В Японии регулярное радиовещание и производство бытовых детекторных радиоприемников (самая популярная модель – “Sharp Dyne”) начинается в 1925 г.
С изобретением усилителя промежуточной частоты на 465 кГц, классическим типом радиоприемного устройства становится супергетеродин, чувствительный ко всему диапазону радиоволн, включая короткие. Благодаря аудиоусилителям удалось подключить к радиоприемнику громкоговоритель и прослушивать передачи целой аудиторией. В США первые супергетеродины (на шести лампах) поступили в продажу в марте 1924 г.
Первые промышленные образцы электронных ламп в России в 1914 г. разработал инженер Русского общества беспроволочных телеграфов и телефонов (РОБТиТ) Н. Д. Папалекси. «Пустотелые реле Папалекси» предназначались для усилителей звуковой частоты в армейском радиотелеграфе. Откачка собранных ламп производилась с помощью парортутного насоса конструкции С. А. Боровика на заводе пустотных аппаратов Н. А. Федорицкого (Набережная реки Фонтанка, 165).
В 1915 г. под руководством поручика М. А. Бонч-Бруевича началось производство электронных ламп в мастерских Тверской приемной радиостанции международных сношений. Аноды этих ламп изготавливались из железной сетки в целях лучшей теплоотдачи, а для удлинения срока службы в них были вставлены два катода на цоколях, расположенных друг против друга. Когда сгорал один катод, лампу переворачивали и включали другой.
Местом рождения отечественной радиопромышленности считается Кронштадтская мастерская «для производства и ремонта аппаратов телеграфирования без проводов». Она была организована по заданию Морского технического комитета А. С. Поповым 2(14) сентября 1900 г. В 1910 г. мастерская была переведена в Петербург и в 1915 г. стала именоваться Радиотелеграфным заводом морского ведомства (с 1922 г. «Радиотелеграфный завод имени Коминтерна»).
После Октябрьской революции 1917 г. все радиотелеграфные заводы страны были национализированы. 2 декабря 1918 г. В. И. Ленин подписал «Положение о радиолаборатории с мастерской Народного Комиссариата почт и телеграфов». Нижегородская радиолаборатория – первый советский научно-исследовательский центр в области радиотехники и электроники, где в 1918-1923 гг. были разработаны первые в Европе образцы генераторных электронных ламп с водяным охлаждением.
28 июля 1924 г. советское правительство приняло постановление «О частных приемных радиостанциях», закрепившее за гражданами страны право владения собственными радиоприемниками. В 1924 г. Трест заводов слабого тока приступил к серийному производству детекторных приемников «П-2» и «ЛДВ» («Любительский Детекторный Вещательный»). В 1925 г. поступил в продажу ламповый радиоприемник «Радиолина № 2». Он изготавливался по французской лицензии, но с использованием усовершенствованных радиоламп Р-5 и «Микро» производства ленинградского Электровакуумного завода. В 1925 г. в СССР насчитывалось около 20 тыс. радиоприемных устройств, из которых только 5 % являлись ламповыми.
Первым отечественным серийным супергетеродином был приемник танковой радиостанции 71-ТК разработки 1932 г. Первый бытовой супергетеродин «СВД» был запущен в серийное производство в 1936 г.
Радиоламповое производство в Европе и в США создавалось на базе существующих предприятий по изготовлению осветительных ламп накаливания. Этому способствовала родственность многих производственных операций и технологических процессов. Классическим примером удачного совмещения нескольких видов производства электровакуумных приборов: ламп накаливания, рентгеновских трубок и радиоламп, – являются «Электроламповые заводы Филипса». В 1923 г. эта голландская фирма выпустила первую серийную радиолампу Miniwatt, выгодно отличавшуюся эксплуатационной надежностью и значительно меньшим энергопотреблением. К 1933 г. «Электроламповые заводы Филипса» произвели 100 млн. радиоламп различных конструкций.
Кроме радиотехники электронные лампы нашли применение для выполнения таких ответственных операций, как управление амплитудой и длительностью выходного тока. Их использовали вместо электромагнитных контактов и реле в управлении электродвигателями, электропечами и станками. Во многих странах мира стали широко применяться низкочастотные направленные радиомаяки для навигации полётов самолётов в ночное время.
В конце 1920-х годов одновременно в Европе и Америке были разработаны комбинированные многоэлектродные радиолампы с экранными сетками: пентоды, гептоды и октоды, что позволило сократить количество радиоламп на одно устройство в среднем до 1-3-х шт., уменьшить вес и габариты профессиональных и бытовых радиоприемников. Радиотехника и электроника перешли к освоению и использованию диапазона ультракоротких волн – метровых, дециметровых, сантиметровых и миллиметровых. Пик инноваций в электровакуумной технике пришёлся на 1934 год – в этом году производители выпустили максимальное количество новых разработок, в том числе первые радиочастотные пентоды-жёлуди. Наметился переход стационарной аппаратуры с напряжений накала 2.5 В и 4 В на напряжение 6.3 В.