Литмир - Электронная Библиотека
Содержание  
A
A

И все мы прекрасно понимаем, что работа диссертанта – это большой шаг вперед, сделанный в науке математике, и что автор ее не только достоин степени доктора, но он достоин еще гораздо более высокого звания, звания настоящего математика, настоящего ученого и настоящего представителя своей науки. Вот то впечатление, которое я вынес от этой защиты и которым хотел поделиться с вами, членами Ученого Совета». (Конец цитаты).

Теперь вкратце и наглядно объясню – что такое «проблема Плато», и что, собственно говоря, мне удалось сделать. Когда бельгийский физик Жозеф Плато в XIX веке начал опыты по изучению конфигурации мыльных пленок, он вряд ли предполагал, что они послужат толчком к развитию целого научного направления, бурно развивающегося до настоящего времени и известного под названием «проблема Плато». Опыты Плато хорошо знакомы нам с детства – это выдувание мыльных пузырей или конструирование мыльных пленок, затягивающих проволочный контур.

Берем гибкую тонкую проволоку, туалетное мыло и миску воды. Растворяем мыло в теплой воде, добавляем ложку глицерина. Из проволоки делаем замкнутый контур с ручкой. Опускаем его в мыльный раствор и осторожно вынимаем. На нем повисает красивая радужная мыльная пленка, ограниченная этим контуром. Замысловато изгибая контур, можно получать самые разнообразные формы пленок. Физический принцип, лежащий в основе возникновения мыльных пленок, достаточно прост: физическая система сохраняет свою конфигурацию только в том случае, когда она не может легко изменить ее, заняв положение с меньшим значением энергии. Энергия мыльной пленки пропорциональна ее площади. Поэтому жидкая пленка превращается в эластичную поверхность, стремящуюся минимизировать свою площадь, и, следовательно, минимизировать энергию натяжения, приходящуюся на единицу площади. Минимальные поверхности встречаются в живой природе и физике как поверхности раздела двух сред с одинаковым давлением, находящихся в равновесии.

Таким образом, математической моделью мыльной пленки служит гладкая (или кусочно-гладкая) поверхность минимальной площади, затягивающая данный контур, рис. 3.38. Математики называют ее минимальной поверхностью. Такие поверхности являются математическим объектом, достаточно хорошо моделирующим физические мыльные пленки. Математическая теория минимальных поверхностей относится к так называемому вариационному исчислению – области анализа и геометрии, возникшей в XVIII веке. В наши дни для развития теории минимальных поверхностей привлекаются современные средства топологии и дифференциальной геометрии. Это богатая и сложная наука. Здесь переплетаются теории дифференциальных уравнений, групп Ли, гомологий и когомологий, бордизмов и т. д.

Как было на самом деле. Каждая история желает быть рассказанной - i_138.jpg

Рис. 3.38. Мыльная пленка = минимальная поверхность, затягивающая замкнутый проволочный контур.

Рассмотрим сначала простой случай, когда контур не слишком сильно изогнут – а именно, когда его можно взаимно-однозначно спроектировать на выпуклый контур, лежащий в некоторой плоскости. Тогда, оказывается, существует одна и только одна минимальная поверхность, затягивающая данный контур. Если же не ограничиваться простейшими контурами, то теорема единственности перестает быть верной: на один и тот же контур иногда можно натянуть несколько совсем разных минимальных поверхностей, рис. 3.39.

Как было на самом деле. Каждая история желает быть рассказанной - i_139.jpg

Рис. 3.39. Несколько минимальных поверхностей, затягивающих один и тот же граничный контур.

Если сильно запутать контур (например, заузлить его), то не только может нарушиться единственность пленки, но и сама ее структура может сильно усложниться. В общем случае «почти наверняка» появляются особые точки (сингулярности), то есть такие точки, в окрестности которых пленка уже не устроена, как слегка изогнутый диск, а имеет более сложную, ветвящуюся структуру, рис. 3.40, рис. 3.41, рис. 3.42.

Как было на самом деле. Каждая история желает быть рассказанной - i_140.jpg

Рис. 3.40. Если граничный контур достаточно сложный, то на минимальной поверхности (на мыльной пленке) появляются особые точки, сингулярности.

Как было на самом деле. Каждая история желает быть рассказанной - i_141.jpg

Рис. 3.41. Чем сложнее граничный контур, тем больше может быть особенностей у минимальной поверхности.

Как было на самом деле. Каждая история желает быть рассказанной - i_142.jpg

Рис. 3.42. Пример сложной минимальной поверхности, ограниченной достаточно сложным контуром.

Оказывается, минимальные поверхности широко распространены в природе. Например, как наиболее экономные поверхности, формирующие скелеты некоторых живых организмов. Весьма эффектный пример особенностей минимальных поверхностей дают скелеты радиолярий, микроскопических морских животных, имеющих самые разнообразные и экзотические формы. Радиолярии состоят из небольших комочков протоплазмы, заключенных в пенообразные формы, наподобие мыльных пузырей и пленок. Минимальные поверхности, образующиеся в радиоляриях, имеют много особых точек и ребер ветвления, на которых и концентрируется основная масса жидкости, входящей в состав организма.

Здесь жидкость тормозится и оседает, образуя «водяные отрезки». Концентрация жидкости вдоль ребер ветвления приводит к тому, что твердые фракции морской воды и соли оседают вдоль этих ребер и постепенно образуют твердый скелет животного. После его гибели мягкие ткани распадаются и остается твердый скелет. На рис. 3.43 показано несколько скелетов радиолярий.

Как было на самом деле. Каждая история желает быть рассказанной - i_143.jpg

Рис. 3.43. Скелеты радиолярий, наглядно показывающие структуру ребер и точек ветвления минимальных поверхностей.

Примерами минимальных поверхностей могут служить хорошо известные мембраны – это и барабанная перепонка в нашем ухе; это мембраны, служащие границами живых клеток и т. п. В 30-е и 40-е годы XX века был достигнут большой прогресс в изучении свойств двумерных минимальных поверхностей в трехмерном пространстве. Обычно «проблема Плато» формулируется так: верно ли, что на любой замкнутый контур можно натянуть минимальную поверхность? И если «да», то – сколько таких поверхностей, и каковы их топологические свойства? С математической точки зрения это весьма непростая проблема.

Замечательные результаты в этом направлении были получены в первой половине XX века Дугласом, Радо, Курантом и др. В частности, была доказана фундаментальная теорема, утверждающая, что для любого достаточно хорошего одномерного контура (то есть, замкнутой кривой) всегда существует минимальная поверхность в трехмерном пространстве, затягивающая этот контур, причем ее площадь не превышает площади любой другой поверхности, затягивающей этот же контур.

После решения проблемы Плато для контуров в трехмерном пространстве математики перешли к «многомерной проблеме Плато». То есть вместо одномерного контура теперь рассматриваются «многомерные контуры» – замкнутые многообразия (компактные поверхности без края).

Проблема звучит так: на любой ли «многомерный контур» можно натянуть минимальную поверхность (на единицу большей размерности) наименьшей возможной площади (объема)? Эта многомерная задача связана с многочисленными приложениями как в математике, так и в механике, математической физике. Многомерная проблема оказалась чрезвычайно трудной. Начиная с 60-х годов XX века в этой области произошел существенный скачок, связанный с такими именами, как: Федерер, Флеминг, Миранда, Райфенберг, Морри, Бомбьери, Джусти, Альмгрен, де Джиорджи, Саймонс, Лоусон и другие. Выяснилось, что в многомерном случае требуется сначала правильно сформулировать понятие границы и минимальной поверхности, затягивающей эту границу. Для этого был привлечен язык теории гомологий, что позволило доказать теорему существования глобально минимальной поверхности для заданного «гомологического контура» (замечательные результаты Райфенберга, Федерера и других).

33
{"b":"582707","o":1}