Литмир - Электронная Библиотека
A
A

Варламов О.О

Миварный подход к созданию интеллектуальных систем и искусственного интеллекта. Результаты 25 лет развития и ближайшие перспективы

Введение

Миварный подход относится к научному направлению "искусственный интеллект" и развивается уже около 25 лет. Вместе с тем, миварный подход объединяет и другие научные области компьютерных наук, информатики и дискретной математики, включая: базы данных, экспертные системы, системы логического вывода на основе развития продукций, теорию графов, матрицы, параллельное выполнение программ на кластерах, проектирование новых архитектур компьютеров, массовое суммирование чисел, техническую защиту информации и информационную безопасность, гносеологию (частично и в плане создания новой наиболее мощной модели данных на основе "тройки" "вещь-свойство-отношение"), сервисно-ориентированные архитектуры, компьютерные сети, информационные инфраструктуры, теоретическую робототехнику, многоагентные системы и некоторые другие. Напомним, что по классике в компьютерных науках (информатике) выделяют 5 основных видов действий:

1) сбор (получение, ввод, создание);

2) накопление (хранение);

3) передача;

4) обработка и

5) представление информации.

С точки зрения искусственного интеллекта (ИИ), первый и пятый пункты отражают взаимодействие с внешней средой. Существует модель [72, 229], которая обобщает и показывает единство процессов накопления и передачи информации. Совсем кратко, суть такого подхода в том, что выделяют три основных сущности: отправитель информации, время передачи информации и получатель информации. Тогда, в зависимости от того, кто кому и за какое время передает информацию, единообразно описываются и хранение информации (передача самому себе за длительное время), и передача информации (отправитель и получатель разные, а время передачи мало), и другие возможные комбинации. Таким образом, получаем, что самыми важными для внутреннего развития ИИ являются два основных действия: обработка и накопление информации.

Миварный подход объединяет две основные технологии накопления данных и обработки информации:

1) миварное информационное пространство: накопление данных на основе эволюционной самоорганизующейся миварной модели данных с изменяющейся структурой в теории баз данных, и

2) миварные сети: обработка информации на основе развития продукционного подхода к логическому выводу с учетом включения возможности автоматического конструирования алгоритмов для "решателей задач" и традиционной вычислительной обработки, а также с использованием идей отношений, правил и процедур, которые теперь принято относить к сервисно-ориентированным архитектурам и многоагентным системам.

Суть миварного подхода в объединении баз данных и систем логико-вычислительной обработки в единые эволюционно развивающиеся системы, позволяющие собрать воедино все различные научные разработки на основе сервисно-ориентированных архитектур и технологий интеллектуальных агентов – многоагентных систем. Про такое возможное объединение писали очень многие ученые [1-23, 46-126, 134-137, 226, 245, 264, 273, 450-525] и теперь, с появлением миварного подхода, это становится реальностью. Ранее в наших работах было показано [46-126, 303, 354-355, 503-504], что такое миварное объединение позволит создать глобальные самоорганизующиеся программно-аппаратные комплексы с эволюционной структурой для познающе-диагностических систем, экспертных систем и систем оперативной диагностики.

Главное свойство нашего миварного подхода в том, что он не отвергает ничего из уже созданного, а создает основу, фундамент, для объединения всех существующих и перспективных наработок в этой (и многих других) активно развивающейся научной области. Более того, миварный подход объединяет технологии баз данных, баз знаний, логического вывода и различных вычислительных процедур. Наш новый формализм миварного многомерного эволюционного пространства унифицированного представления данных и правил позволяет описать все существующие традиционные модели данных и методы логической и вычислительной обработки информации. Такое единое описание и создает предпосылки для объединения всех достижений и перехода к новому качеству в области ИИ.

Миварная модель данных является более мощной, чем модель "сущность-связь" (ER-модель), и поэтому позволяет описывать и объединить в своем формализме все традиционные структурные и бесструктурные модели данных, включая семантические сети, онтологии и гипертекст. Реляционные таблицы представляются в многомерном миварном пространстве в виде двумерных таблиц, объединяемых в трехмерное пространство с возможностью и дальнейшего наращивания измерений. Сетевые модели, семантические сети и онтологии представляются в миварном пространстве в виде неких графов, помещенных в дискретное многомерное пространство, что также только усиливает возможности подобных сетевых моделей. В книге Варламова О.О. [72] подробно в виде формул и цифр показано подобное представление и возможность перехода из одного представления данных в другое через миварное пространство или одномерные таблицы представления данных, которые являются упрощением миварного представления. Более того, миварное пространство основано именно на том факте, что пользователи могут одновременно использовать различные модели данных, от реляционных и гипертекстовых, постепенно вводя все больше структурированности и переходя к сетевым, семантическим сетям и онтологиям, а уже через них – далее к миварному пространству. Миварное пространство по самой своей сути является эволюционным и предназначено для изменения структур хранения данных и перехода к разным моделям!!!

Миварные сети основаны на продукционном подходе "если, то…" с переходом к более сложной структуре правил с предусловиями, условиями, ограничениями, действиями и последействиями. Это позволяет записывать все причинно-следственные отношения, включая и все возможные формы предикатов и т.п. логических выражений. Мы не отрицаем значение предикатов и поиска истинных выражений, а только создаем возможность и для их реализации, и для реализации всех возможных других представлений правил в виде: сервисов, процедур, продукций, подпрограмм и т.п. Такой подход позволяет работать одновременно с разными описаниями предметных областей, прибавляя к предикатам и продукции, и нейросети, и генетические алгоритмы, и традиционные вычислительные процедуры, и все другие в виде универсальных миварных отношений, которые представляются и хранятся перед обработкой в нашем миварном пространстве. Мы создаем разнообразие представлений и разных подходов к решению задач для самых различных предметных областей. Миварный подход изначально является очень хорошо распараллеливаемым и может работать в ГРИД-системах, компьютерных сетях и на многопроцессорных вычислительных комплексах. Это все реализация традиционных подходов в едином формализме миварных сетей. Здесь важно подчеркнуть, что знания в виде процедур, правил и отношений хранятся вместе с фактами в едином миварном пространстве – больше нет противоречий между базами данных и базами знаний, т.к. они красиво объединены в эволюционном миварном пространстве. Это касается ХРАНЕНИЯ данных и правил в едином формате. Но, кроме хранения, миварное пространство позволяет проводить и ОБРАБОТКУ информации в миварных сетях, которые фактически реализуют отношения из классической миварной "тройки" "вещь-свойство-отношение". А значит, больше нет противоречий и между хранением и обработкой информации!!!

Однако для решения реальных задач важна и форма представления знаний, т.к. разные формы позволяют с разной вычислительной сложностью и достоверностью решать одни и те же задачи. Как уже неоднократно подчеркивалось, миварный подход разрешает в своем формализме реализовывать все традиционные виды обработки. Но, при этом, он же предлагает и новые возможности… Сейчас уже никто не пойдет пешком из Москвы во Владивосток, хотя такая возможность для любителей и фанатов исчисления предикатов все еще сохраняется; – )! Если вам нравится исчисление предикатов, то можете и далее продолжать "играть" в свои "игрушечные" задачи с 30 правилами и NP-полными алгоритмами. Однако миварные сети предоставляют возможность сменить само представление графов, включая и многодольные и т.п., перевести их в матрицы, включая многомерные бинарные, и, если это получилось, то решать задачи с линейной вычислительной сложностью. Любители исчисления предикатов могут называть логический вывод в таких матрицах автоматическим конструированием алгоритмов, но суть от этого не изменится: линейная сложность и решение реальных задач с десятками тысяч правил и объектов, а также возможность параллельных решений и подключения новых возможностей: сервисов, правил, процедур, нейроподпрограмм, генетических и т.п. модулей, ГРИД-технологий, облачных вычислений, агентов и т.п. Мивары ничего не запрещают и не отвергают, а наоборот позволяют решать комплексные задачи различными методами, включая: предикатные, продукционные, нейроматематические, генетические, нечеткие, вероятностные и прочие методы работы как с полной, так и с неполной и противоречивой информацией. Более того, мивары позволяют одновременно решать одну задачу разными методами и на разных моделях, позволяя выбрать наиболее адекватное решение в заданные сроки и с необходимой точностью. Это новый МИВАРНЫЙ глобальный подход к одновременному решению многих реальных задач на разных моделях параллельно и в реальном времени на основе компьютерных сетей и кластеров с "облаками".

1
{"b":"582359","o":1}