Литмир - Электронная Библиотека

В течение нескольких десятилетий никто не мог сформулировать достаточно правдоподобную теорию, которая проливала бы свет на это загадочное явление. Лишь в 1961 г. Джой Адамсон в продолжении своей повести Born Free («Рожденная свободной») удивлялась тому же явлению, которое она наблюдала на африканском континенте[6] (кстати, ее описание синхронного мерцания светлячков на африканском континенте является первым).

…полоса света шириною около десяти футов, образованная тысячами тысяч светлячков, зеленое фосфоресцирующее свечение которых создает восхитительный по красоте покров на высокой, по пояс, траве… Флуоресцирующая полоса, созданная этими крошечными организмами, раз за разом вспыхивает и погасает с поразительной по своей точности синхронностью. Остается лишь удивляться, какими средствами коммуникации должны обладать эти крошечные существа, чтобы они могли координировать свое мерцание так, словно ими управляет некое механическое устройство.

К концу 1960-х годов из отдельных фрагментов этого пазла начала вырисовываться некая картина. Одна из подсказок была столь очевидной, что почти никто не обратил на нее внимания. Синхронные светлячки мерцали не только в унисон – они мерцали в определенном ритме, в постоянном темпе. Даже когда они были изолированы друг от друга, они продолжали мерцать синхронно. Из этого следует, что каждое насекомое должно располагать своим собственным средством определения хода времени, своего рода внутренним часовым механизмом. Этот гипотетический осциллятор до сих пор не определен анатомически, но почти наверняка он должен представлять собою некий кластер нейронов, находящийся где-то в крошечном мозге насекомого. Во многом подобный естественному задатчику ритма в сердце человека, этот осциллятор действует на определенной частоте, вырабатывая электрические сигналы ритма, которые поступают на светоэлемент светлячка[7] и приводят к его периодическому срабатыванию («включению»).

Вторая подсказка содержится в работе биолога Джона Бака, который сделал больше, чем кто-либо другой, чтобы обеспечить научную достоверность исследований, пытающихся объяснить синхронизм действий светлячков. В середине 1960-х годов Джон Бак вместе со своей женой Элизабет впервые отправился в Таиланд в надежде увидеть собственными глазами это загадочное явление. В ходе неформального, но весьма полезного эксперимента супруги выловили на берегах рек в окрестностях Бангкока множество светлячков и выпустили их в своем гостиничном номере, предварительно затемнив его[8]. Насекомые повели себя весьма нервно, но затем постепенно распространились по стенам и потолку, находясь друг от друга на расстоянии не менее 10 сантиметров. Поначалу они мерцали вразнобой. Вскоре супруги Бак, в молчаливом удивлении наблюдавшие за светлячками, заметили, что сперва пары, а затем и тройки светлячков начали мерцать в унисон. Группы синхронно мерцающих светлячков становились все больше и больше.

Из этих наблюдений следовало, что светлячки должны как-то «настраивать» свои ритмы в ответ на мерцания других светлячков. Чтобы непосредственно протестировать эту гипотезу, Бак и его коллеги провели впоследствии лабораторные исследования[9], в ходе которых они создавали для светлячка мерцание искусственным светом (имитируя таким образом свечение другого светлячка) и наблюдали за его реакцией. Они обнаружили, что отдельно взятый светлячок корректирует моменты своих последующих мерцаний вполне определенным, предсказуемым образом и что величина и направление такой коррекции зависит от того, в какой момент цикла было воспринято внешнее воздействие. У некоторых видов светлячков внешнее воздействие всегда смещало ритм подопытного светлячка несколько вперед, словно переводя стрелки его внутренних часов вперед, тогда как у других видов светлячков внешнее воздействие смещало ритм подопытного светлячка либо несколько вперед, либо несколько назад в зависимости от того, насколько подопытный светлячок был близок к тому, чтобы мигнуть (одно дело, если светлячок был буквально на грани очередного мигания, и другое – если он был лишь на полпути к очередному миганию).

Взятые вместе, эти две подсказки предполагали, что ритм мерцания регулируется внутренним, перенастраиваемым осциллятором[10]. А это непосредственно указывало на возможное существование некого механизма синхронизации: каждый из членов сообщества мерцающих светлячков непрерывно посылает и принимает сигналы, смещая ритмы других светлячков и смещая собственный ритм в результате воздействия с их стороны. Из всей совокупности таких взаимовлияний каким-то образом спонтанно возникает синхронизм.

Таким образом, мы приходим к объяснению, которое казалось немыслимым лишь несколько десятков лет тому назад: светлячки организуют сами себя. Им не нужен дирижер, и погода не имеет значения для них. Синхронизм возникает за счет взаимообмена сигналами – точно так же, как участники оркестра могут добиться идеальной синхронности своих действий без помощи дирижера. Правда, в случае светлячков исследователей ставит в тупик то обстоятельство, что для обеспечения синхронизма этим насекомым не требуется интеллект. Они располагают всеми необходимыми для этого ингредиентами: у каждого светлячка имеется осциллятор, что-то наподобие маленького метронома, моменты выработки сигналов которым корректируются автоматически в ответ на мерцания других светлячков. Вот, собственно, и все.

За одним исключением: отнюдь не очевидно, что этот сценарий работоспособен. Может ли идеальный синхронизм возникнуть из какофонии многих тысяч лишенных разума метрономов? В 1989 г. я вместе со своим коллегой Ренни Миролло доказали правильность такого ответа. Описанный сценарий не только работоспособен – он обязательно будет работоспособен при определенных условиях.

По причинам, которые нам непонятны до сих пор, тенденция к синхронизму является одной из самых распространенных движущих сил во Вселенной[11], охватывая практически все уровни, начиная с атомов и заканчивая животными, начиная с людей и заканчивая планетами. Женщины, которые дружат между собой, или сотрудницы, проводящие много времени вместе, нередко обнаруживают, что их менструальные циклы постепенно сближаются и начинаются примерно в один и тот же день. Сперматозоиды, двигающиеся бок о бок на своем пути к яйцеклетке[12], машут своими «хвостиками» в унисон, демонстрируя что-то похожее на простейшие элементы синхронного плавания. Иногда синхронизм принимает разрушительный характер: эпилепсия вызывается патологическим синхронным разрядом миллионов клеток мозга, что приводит к ритмичным конвульсиям, вызывающим хватательные движения. Синхронизм может возникать даже в неживой природе. Поразительная когерентность лазерного луча обеспечивается синхронной пульсацией триллионов атомов, которые испускают фотоны одной и той же фазы и частоты. На протяжении многих тысячелетий Луна под воздействием Земли постепенно замедляла вращение вокруг собственной оси. Хотя Луна вращается вокруг собственной оси, она всегда обращена к Земле одной и той же стороной (ее темную сторону мы не видим никогда), так как обращение Луны вокруг Земли и вращение Луны вокруг собственной оси синхронизировано: фактически Луна, облетая Землю каждые двадцать семь с половиной дней, совершает также одно полное вращение вокруг собственной оси против часовой стрелки.

На первый взгляд, эти явления могут показаться не связанными между собой. В конце концов, силы, которые синхронизируют клетки головного мозга никак не связаны с силами, которые обеспечивают синхронизм атомов лазера. Однако при более близком рассмотрении можно обнаружить связь, которая охватывает собою детали любого конкретного механизма. Этой связью является математика. Все приведенные выше примеры представляют собой вариации одной и той же математической темы: самоорганизации, спонтанного возникновения порядка из хаоса. Изучая простые модели поведения светлячков и других самоорганизующихся систем, ученые начинают раскрывать тайны этой восхитительной разновидности порядка во Вселенной.

вернуться

6

Joy Adamson, Living Free (London: Collins and Harvill, 1961). Цитата со стр. 29.

вернуться

7

Дополнительную информацию о биохимических процессах, обусловливающих ритм мерцания, можно почерпнуть в статье Barry A. Trimmer et al., “Nitric oxide and the control of firefly flashing,” Science 292 (2001), pp. 2486–2488.

вернуться

8

John Buck and Elisabeth Buck, “Mechanism of rhythmic synchronous flashing of fireflies,” Science 159 (1968), pp. 1319–1327.

вернуться

9

Frank E. Hanson, James F. Case, Elisabeth Buck, and John Buck, “Synchrony and flash entrainment in a New Guinea firefly,” Science 174 (1971), pp. 161–164. Популярное изложение этой и других связанных с ней работ можно найти в статье John Buck and Elisabeth Buck, “Synchronous fireflies,” Scientific American 234 (May 1976), pp. 74–85.

вернуться

10

Идея перенастраиваемого осциллятора подробно обсуждается в статье John Buck, “Synchronous rhythmic flashing of fireflies. II,” Quarterly Revtew of Biology 63 (1988), pp. 265–289, которая появилась в том же журнале и под таким же названием ровно через 50 лет после того, как был опубликован его первый обзор литературы по данному вопросу. Этот второй обзор по-прежнему представляет собой исчерпывающую подборку всего, что известно науке о синхронизации светлячков.

вернуться

11

С превосходным современным обзором научной и математической литературы по синхронизации можно ознакомиться в книге Arkady Pikovsky, Michael Rosenblum, and Jurgen Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge, England: Cambridge University Press, 2002).

вернуться

12

Одно из первый упоминаний о синхронных движениях сперматозоидов на их пути к яйцеклетке появляется в книге James Gray, Ciliary Movement (New York: Macmillan, 1928); см. так же рис. 78 на стр. 119. См. также G.I. Taylor, “Analysis of the swimming of microscopic organisms,” Proceedings of the Royal Society of London, Senes A209 (1951), pp. 447–461. Самой последней работой, в которой объясняется, как возникает синхронизм посредством механических сил, передаваемых через жидкость, является статья S. Gueron and K. Levit-Gurevich, “Computation of the internal forces in cilia: Application to ciliary motion, the effects of viscosity, and cilia interactions,” Biophysical Journal 74 (1998), pp. 1658–1676.

4
{"b":"580897","o":1}