Литмир - Электронная Библиотека
A
A

Но есть бионическое приспособление с гораздо более давней — хотя на первый взгляд и менее драматической историей — это искусственные зубы. Зубные протезы существовали в Древнем Египте 3000 лет назад: фараоны заменяли выпавшие зубы зубами из слоновой кости или просто из кости, прикрепленными тонкой золотой проволокой. Римские дантисты также умели весьма хитроумно вырезать и прикреплять фальшивые зубы из костей животных или человека. Если зубы были хорошо выпилены, то и служили они хорошо, но пристроить фальшивые зубы к деформирующейся поверхности чьей-то челюсти — дело мудреное. В XV в. зубные протезы представляли собой зубы, вырезанные из слоновой кости и прикрепленные к деревянной пластинке, прикрывающей челюсти: такой протез был столь неудобен, что пользовались им с чисто косметической целью, во время еды его вынимали. Позднее, в XIX столетии, протезисты позаимствовали у ювелиров технологический прием, называемый "штамповкой", и стали изготовлять зубные протезы, которыми можно было пользоваться и для пережевывания пищи. Применяя свинцовые и цинковые формы, полученные со слепков челюстей конкретного человека, дантисты "штамповали" золото по этому слепку, затем приклеивали к нему плотную резину, а к ней крепили фарфоровые зубы. И только в 30-х годах текущего столетия эти материалы уступили место акриловым пластмассам, которые используются и по сей день.

Однако даже самые сложные зубные протезы кажутся пустяком по сравнению с новыми хитроумными изобретениями в области протезирования.

Бионическое зрение

Если не считать очков, изобретенных китайцами в X в., мы не располагали никакими искусственными приспособлениями, которые могли бы вернуть человеку зрение. Но теперь бионика сделала реальностью восстановление зрения во многих случаях, прежде считавшихся совершенно безнадежными.

Помутнение роговицы обычно происходит в результате механического повреждения или не вполне понятных изменений в химическом составе глаза. Но эти изменения приводят к тому, что наружная прозрачная оболочка глаза, так называемая роговица, которая пропускает видимый глазом свет, становится мутной и постепенно человек слепнет. Это заболевание, чаще всего возникающее в пожилом возрасте, ранее умели лечить только одним способом — пересадкой роговицы от трупа.

Обычно достаточно пересадить лишь часть роговицы, но иногда повреждения так сильны, что приходится заменять ее полностью. Однако из четырех полных пересадок роговицы удается только одна: это объясняется тем, что жидкость внутри глаза находится под давлением, и трансплантат очень трудно удержать на месте в течение месяца — срока, необходимого для его приживления. Кроме того, стоит больному чихнуть или закашляться — и пересаженная роговица может сместиться.

Эта проблема вынудила Уильяма Стоуна, хирурга-офтальмолога Массачусетского приюта для глухих и слепых в Бостоне, заняться созданием бионического заменителя поврежденной роговицы из прозрачного акрила — точно такого, какой идет на изготовление зубных протезов и ветровых стекол в кабинах реактивных истребителей. Пластиковая роговица ввинчивается в гнездо, напоминающее крохотную кнопку, и эта кнопка прикрепляется швами на поверхности глаза прямо напротив зрачка. Ввинчивающаяся пластиковая роговица, которую можно вывинтить или заменить другой по рецепту врача, вживлена уже 400 больным.

Медицинская техника снабдила нас и бионическим хрусталиком. Хрусталик глаза, находящийся непосредственно за радужной оболочкой, часто мутнеет вследствие катаракты. От этого он темнеет и рассеивает или не пропускает падающий на глаз свет. Обычно от катаракты избавляются путем хирургического вмешательства. Хирург делает маленькое отверстие в оболочке глаза (так называемом белке), подводит к нему небольшой высасывающий прибор и извлекает хрусталик из глаза. После такой операции накладывается шов, и свет снова свободно проникает в глаз.

К сожалению, лишенный хрусталика глаз не способен фокусировать лучи света самостоятельно — больной нуждается в толстых очках или в контактных линзах. Пользование очками сопряжено с большими неудобствами, приходится менять очки, если нужно перевести взгляд с близкого объекта на отдаленный; при этом вести машину, например, очень трудно. Некоторый выход из положения сулит использование контактных линз, настроенных на средние расстояния, в сочетании с бифокальными очками, но не все могут спокойно носить контактные линзы.

Д-ру Норману Джаффу из Университета в Майами удалось решить эту проблему: он изобрел искусственный вживляемый хрусталик. Из полиметакрилата — вещества, близкого к акрилу, применяемому для создания искусственной роговицы, — вытачивается крохотный бионический хрусталик с точной, фиксированной фокусировкой: хрусталик помещается в мягкое кольцо из дакроновых волокон. Это кольцо, вшиваемое позади радужной оболочки, служит своеобразным якорем, который удерживает хрусталик против зрачка. Пластиковый хрусталик не способен менять фокус, но в сочетании с очками можно достигнуть почти стопроцентного зрения. Теперь такими искусственными хрусталиками заменяют помутневшие от катаракты хрусталики не менее сотни хирургов в США.

Но повреждение хрусталика или роговицы далеко не единственная причина слепоты. Большинство из 110 000 жителей США, полностью лишенных зрения, потеряли его из-за более серьезных повреждений глаз. Одна из форм слепоты, в настоящее время не поддающаяся лечению, — глаукома, при которой жидкость позади хрусталика, называемая aqueous humorx выделяется в избытке; при этом ее давление возрастает настолько, что разрывает нежные светочувствительные слои сетчатки. Также неизлечимы в настоящее время случаи слепоты от болезней, вызывающих дегенерацию глазного нерва, и врожденных болезней, при которых травмированы сетчатка или нервы, связывающие ее с мозгом. Однако и в этих случаях появилась некоторая надежда, которую сулит нам технология телевидения.

Телевизионная камера работает примерно по такому же принципу, что и глаз: в ней свет, пройдя через фокусирующее устройство, преобразуется в электрические импульсы. Природа и форма импульсов, посылаемых телекамерой, сильно отличаются от импульсов, посылаемых глазом к мозгу, но теоретически возможно применять электрические импульсы от телекамеры, для того чтобы вызвать зрительные ощущения в мозгу.

Офтальмолог Уильям Добелл, директор отделения нейропротезирования Института биомедицинской инженерии при Университете штата Юта, изучив импульсы, которые нормальный глаз посылает в мозг при раздражении светом, изобрел специальный компьютер, который мог бы преобразовывать импульсы от телекамеры в импульсы, подобные испускаемым сетчаткой глаза. Затем Добелл сделал квадратики из тефлона и платины и вживил их двум слепым добровольцам внутрь черепной коробки поблизости от тех участков головного мозга, где получаемая с помощью глаза информация преобразуется и превращается в видимый образ. Маленькие электрические датчики в головах добровольцев были подключены к телекамерере, которая была наведена на несколько предметов самой простой формы. Едва электрические раздражения достигли датчиков, как оба испытуемых заявили, что "видят" вспышки света (так называемые фосфены). По свидетельству Добелла, один из больных, потерявший зрение 28 лет назад, утверждал, что улавливает бесцветные, мерцающие фосфены размером примерно с монету, видимую на расстоянии вытянутой руки.

Ученый продолжал работать над своим изобретением и создал систему искусственного зрения, которая позволила 33-летнему мужчине, лишенному зрения на протяжении 10 лет, подключиться к компьютеру, дающему человеку возможность "видеть" электронные сигналы в своем мозгу. В зрительные участки мозга испытуемого было вживлено 64 электрода, и от каждого электрода через отверстие в черепе шла тоненькая проволочка к графитовому штеккеру, вшитому в кожу. При включении штеккера в компьютер, соединенный с телекамерой, слепой человек получает возможность читать буквы по Брайлю в виде точек света и различать вертикальные и горизонтальные линии. По мнению Добелла, его эксперимент делает реальными долгосрочные имплантации. Как он полагает, со временем в глазницу слепого будет помещаться телекамера, связанная через миниатюрный компьютер с вживленными в мозг электродами. И хотя потребуется еще немало экспериментов, чтобы от простых схематических рисунков перейти к более сложным черно-белым изображениям, Виллем Кольфф, пионер бионических исследований, уверен, что в конце концов искусственное зрение подобного типа позволит слепым видеть изображения, напоминающие "картины на световом табло Хьюстонского космодрома".

19
{"b":"580540","o":1}