Литмир - Электронная Библиотека

Ну, а как звук становится музыкальным, как он приобретает высоту? Очень просто. Надо, чтобы упругие воздушные волны отправлялись в путь не беспорядочно, а строго «по расписанию». Если воздух пронизывается ровной грядой волн, бегущих друг за другом на равных расстояниях, то ухо слышит непрерывный звук определенной высоты. И чем чаше следуют одна за другой волны, чем они короче, тем тоньше звук. С повышением частоты он от самых низких восходит к самым высоким. О таком подъеме стоит рассказать особо,

СНИЗУ ДОВЕРХУ

Лет тридцать назад в одном из лондонских театров готовилась к постановке пьеса, действие которой по ходу спектакля переносилось в далекое прошлое. Режиссер хотел подчеркнуть необычайную обстановку оригинальным сценическим эффектом. Но каким? К переменам освещения все привыкли, музыка заглушила бы слова актера. И вот физик Роберт Вуд посоветовал использовать инфразвук — сверхнизкий звук, не слышимый человеком, но при достаточной силе создающий, как уверял Вуд, ощущение «таинственности».

Ученый собственноручно изготовил источник инфразвука— громадную органную трубу. И на очередной репетиции ее опробовали. «Последовал неожиданный эффект, — вспоминает журналист-очевидец, — вроде того, который предшествует землетрясению: задребезжали окна, зазвенели стеклянные люстры. Все старинное здание начало дрожать, ужас прокатился по залу. Пришли в смятение даже жители соседних домов».

Режиссер, понятно, испугался и распорядился, чтобы «такую-сякую» органную трубу немедленно выкинули.

Случай в лондонском театре — единственная попытка использовать инфразвуки в искусстве. Науке же они служат исправно. Есть приборы, способные чутко улавливать инфразвуки. С помощью таких аппаратов геофизики предсказывают штормы на море, изучают подземные толчки.

Наинизший из слышимых человеком музыкальных звуков имеет частоту 16 колебаний в секунду. Он извлекается органом. Но применяется не часто — слишком уж басовит. Разобрать и понять его трудно.

Зато 27 колебаний в секунду — тон вполне ясный для уха, хоть тоже редкий. Вы услышите его, нажав крайнюю левую клавишу рояля.

Следующий любопытный тон — 44 колебания в секунду, абсолютный «нижний» рекорд мужского баса, поставленный в XVIII веке певцом Каспаром Феспером. В наши дни такой звук берет англичанин Норман Аллин.

Поднимаемся дальше. Вот 80 колебаний в секунду — обычная нижняя нота хорошего баса и многих инструментов. Удвоив число колебаний (повысив звук на октаву), приходим к тону, доступному виолончелям, альтам. Здесь отлично чувствуют себя и басы, и баритоны, и тенора, а женские контральто,

А еще октава вверх — и мы попадаем в тот участок диапазона, который буквально «кишит» музыкой. Тут работают почти все голоса и музыкальные инструменты. Недаром именно в этом районе акустика закрепила всеобщий эталон высоты тона, тот самый, что каждую пятницу передается по радио: 440 колебаний в секунду («ля» первой октавы). Это как бы гвоздь, намертво закрепивший всю систему музыкальных тонов для настройки инструментов, игры, нотной записи.

Вплоть до 1000—1200 колебаний в секунду звуковой диапазон полон музыкой. Эти звуки — самые слышные. Выше следуют менее населенные «этажи». Легко взбираются на них лишь скрипки, флейты да такие универсалы, как орган, рояль, арфа. И полновластными хозяйками выступают здесь звонкие сопрано.

Вершины женского голоса забрались еще дальше. В XVIII веке Моцарт восхищался певицей Лукрецией Аджуяри, которая брала «до» четвертой октавы — 2018 колебаний в секунду. Француженка Мадо Робен (умершая в 1960 году) пела полным голосом «ре» четвертой октавы — 2300 колебаний в секунду.

Еще несколько редких, нехоженых ступенек (доступных, разве мастерам художественного свиста) — и музыкальный диапазон кончается. Звуки выше 2500—3000 колебаний в секунду в качестве самостоятельных музыкальных тонов не используются. Они слишком резки, пронзительны. Кто же станет писать музыку, состоящую из свистов да комариных писков!

А с 16 000—20 000 колебаний в секунду начинается недоступный уху человека сверхвысокий ультразвук. Профессий у него масса. Он сверлит камень, счищает ржавчину, измельчает материалы, стирает белье, измеряет глубину рек и морей, лучше рентгена просвечивает тела. И все это он делает молча.

СЛАДКОЗВУЧНЫЕ ПРИБОРЫ

Теперь мы знаем, что такое звук, каким он бывает в музыке. И вместе с тем мы поняли, чем всю жизнь занимаются музыканты: они просто-напросто трясут воздух — чаще и реже, сильнее и слабее. Именно этой цели служат их орудия, сформировавшиеся на протяжении многотысячелетней истории.

О них и пойдет речь дальше.

Как сказано в «Технической энциклопедий», любой музыкальный инструмент есть всего-навсего «физико-акустический прибор», сообщающий окружающей атмосфере различные сочетания колебательных движений. Видимо, под ту же категорию подпадает и голосовой аппарат певца.

Едва ли читателя порадует приведенное определение. Не очень идет принцессе скрипке называться физико-акустическим прибором. Но выбора нет, такова суть вещей. Если романтики и поэты хотят ее познать, им придется перестроиться на новый лад, ибо научные термины подстерегают нас и дальше.

Схему устройства музыкального инструмента физики тоже поясняют своими словами: он представляет собой объединение вибраторов и резонаторов. И, чтобы понять физическую подоплеку музыки, нам придется выяснить сущность обеих частей.

Начнем с вибраторов. Их вокруг легион. Качели в городском саду — вибратор, маятник ваших часов — вибратор, дверная пружина — вибратор. Таким названием наука награждает любое тело, способное колебаться от толчка, удара, трения.

А если вибратор дрожит достаточно часто, совершает десятки, сотни, тысячи размахов в секунду, то он может послать в воздух звуковые волны и поэтому именуется акустическим. Это и есть родина, место физического рождения всей инструментальной да и вокальной музыки.

Акустический вибратор всегда упруг. Из хлебного мякиша его не вылепишь. Зато металлические язычки, тростниковые пластинки, натянутые пленки, жилы, проволочки отлично идут в дело. Их и ставят в трубы, скрипки, барабаны. Есть музыкальные инструменты, которые составлены только из вибраторов — ксилофоны и колокольчики, гонги и тарелки. А в горле певца вибратором служат упругие мышечные связки.

Самый распространенный вибратор — струна. И в ее поведении нам предстоит разобраться поподробнее.

Нетерпеливый читатель может проявить недовольство. К чему-де тратить время на пустяки? Что может быть проще струны? Раскачивается натянутая пить — и все тут.

Не спешите. В том, что кажется простым, порой скрыто немало сложного. Разгадке струны посвятили свой труд многие физики и математики. Главный же вклад в мудреную теорию ее колебаний внес замечательный английский ученый конца XVIII — начала XIX века Томас Юнг. С ним и его исследованиями мы познакомимся в первую очередь и ради этого отправимся... в цирк.

ФИЗИК НА КАНАТЕ

Залит огнями цирк Фракони. Резвый скакун выносит на арену изящного наездника. Стоя в седле, он приветливо машет рукой и принимается за акробатические трюки. Публика неистовствует. А наездник прямо с лошади прыгает вверх, как кошка взбирается на длинный канат и, плавно балансируя, танцует над головами восхищенных зрителей. Ловкий актер срывает восторженную овацию. Его несколько раз вызывают, к его ногам падают цветы.

А через час он сидит в своем кабинете, в окружении книг и физических приборов. Цирковой акробат склонился над листом бумаги, испещренным математическими символами. Знаток циркового каната, он трудится над теорией его маленькой сестры — струны.

10
{"b":"562222","o":1}