Литмир - Электронная Библиотека

Я резюмировал бы наблюдаемую картину следующим образом: (а) значительно более качественные данные; (Ь) более высокие стандарты для эмпирических опытов; (с) большое число новых сложных теорий, не находящих соответствующего практического применения. Развитие таких направлений, как математическая экономика, экономический инжиниринг, экономика сложных систем и теория игр продолжается — чего и следовало бы ожидать от многосторонних и специализированных дисциплин, однако свое относительное влияние данные дисциплины утрачивают. Экономика все в меньшей мере напоминает работу Эйнштейна и Евклида и все в большей — исследования пищеварительной системы морских звезд.

Если сегодня и есть экономисты, работы которых имеют значительное влияние, то это Эстер Дуфло и Абхиджит Банерджи, а также их коллеги из Лаборатории проблем бедности Массачусетского технологического института. Однажды мне довелось посетить один из их исследовательских проектов в Хайдарабаде, Индия. Исследованием были охвачены десятки тысяч человек, одни из которых имели возможность воспользоваться услугами микрокредитования, а другие — нет. В исследуемые группы вошли жители сопоставимых районов, задача же проекта заключалась в определении положительного эффекта микрокредитования или же отсутствия такового. Десятки добровольцев проекта помогали в сборе информации о заемщиках до и во время их участия (или неучастия) в программе микрокредитования. Эта информация включала данные о доходе, новой работе или начале предпринимательской деятельности, невозможности погасить кредит и прочих аспектах повседневной жизни экономического характера. Основной вопрос, на который требовалось найти ответ, был предельно простым: изменилась ли к лучшему жизнь тех, кто воспользовался микрокредитами? Выяснилось, что представители данной категории чаще начинали собственную предпринимательскую деятельность, что и позволило авторам проекта написать свой ставший классическим труд. Некоторые специалисты рассматривают данный проект наряду со схожим экспериментом, проведенным в Йельском университете под руководством Дина Карлана, в качестве самого значимого исследования проблемы микрокредитования. Данные проекты не имеют ничего общего с проектами, где у государственного агентства запрашиваются открытые данные и проводится регрессионный анализ без особого внимания к качеству или значению представленных цифр. Организация и проведение полноценного эксперимента в полевых условиях возможны исключительно человеком и не могут быть выполнены умными машинами.

Используемые вне экономической науки компьютерные программы способны анализировать огромные объемы числовых данных и выявлять закономерности гораздо более совершенным образом, чем это в состоянии сделать сегодняшние эмпирические исследователи. Способны они и представлять результаты своей работы. Программа способна, к примеру, обработать информацию по множеству пользователей социальных сетей и выявить влияние пола, возраста и места жительства на музыкальные предпочтения. Данные программы будут в состоянии подтвердить наличие связей, в существовании которых мы уже убеждены, выявить связи, которые нам пока не видны и, может быть, предложить гипотезы, о которых мы не подозреваем. Экономическая наука к этому пока не пришла, но, возможно, в ближайшие пятьдесят лет подобные решения заменят собой зависимость нынешних экономистов от теоретических моделей. Мощность и качество данных, скорее всего, будут расти быстрее мощности и качества наших самых передовых моделей.

Нынешняя система построения моделей в социальных науках аналогична «логике гроссмейстеров в эпоху, предшествующую появлению компьютера Deep Blue». Построение моделей являлось и по-прежнему остается крайне удобным подходом, поскольку социальные науки еще только ждут появления своего аналога Deep Blue.

С началом использования машинного разума в экономике мы будем в состоянии усовершенствовать свои представления о некоторых фундаментальных закономерностях, свойственных экономическим феноменам. Благодаря машинному анализу мы сможем лучше понять причины финансовых кризисов, выявить факторы, свидетельствующие об избыточной доходности акций, или культурные предпосылки экономического развития. Нам будет комфортно осознавать, что знания, которыми мы уже владели, были подтверждены, за исключением незначительных поправок, машинным разумом. В более долгосрочной перспективе, по мере совершенствования качества данных и роста числа используемых параметров, машинный разум будет в состоянии указать нам, какое сочетание нормативно-правового режима и монетарной политики приведет нас к финансовому кризису (с определенной долей точности, конечно), а мы даже не сможем понять, на чем подобные выводы основаны. Мы будем пытаться разобраться в логике машины, но объемы данных и сложность моделей окажутся за пределами нашего понимания. Мы будем знать, каким образом представлять данные, требующиеся для машинного анализа, как проверять результаты анализа одних машин с помощью других и каким образом данные результаты использовать. Однако настанет момент, когда мы перестанем понимать все составляющие науки, как перестанем понимать и то, каким образом прогнозы сочетаются друг с другом. Лишь машина сможет — на свой собственный манер — владеть полнотой теории и результатов ее проверки.

В конце концов машины окажутся в состоянии посягнуть на все или большинство функций, выполняемых экономистом. Социолог же будущего более не будет представлять собой независимого специалиста, формулирующего теории, проверяющего их относительно имеющихся данных и публикующего полученные результаты. Социолог будущего будет все в большей мере опираться на мощь компьютера и дополнять своей работой деятельность компьютерных программ. Некое подобие публикаций, возможно, и будет существовать, однако главенствующий внешний формат исследовательской информации будет представлен в стандартизированном, удобном для работы машин виде. Вместо «чтения статей» мы будем обращаться к машинам за результатами их метаисследований, суммирующими последние достижения их работы, подобно тому, как сегодня можно запросить анализ шахматной позиции у программы Rybka. То, что раньше было отдельной журнальной статьей, станет информационными данными для программ. «Специалистами» будут считаться специально подготовленные работники, способные разобраться в выводах программы или перевести данные в пригодный для ввода в компьютер формат, а не лица, собственно и выполняющие аналитическую работу.

Это крупнейшее отдельно взятое преобразование в экономической науке, которое мы можем ожидать в ближайшие пятьдесят лет. Когда речь заходит о «новой парадигме», многие ожидают появления очередного Маркса, Кейнса или Хайека. Однако грядущие изменения будут более радикальными и ими будет поставлена под сомнение сама взаимосвязь между ученым и его областью науки. Реальным же преобразованием станет подчиненное положение отдельно взятого ученого.

Я уже наблюдаю начальные проявления данных тенденций в экономике, одной из тех областей социальных наук, где влияние компьютеров наиболее сильно. Новоявленные кандидаты наук весьма ловко управляются с данными, но многие из них не разбираются в проблемах микроэкономики. Если вы зададите им какой-нибудь простой вопрос из области микроэкономики, подобный тем, что когда-то были включены в программу Чикагского университета, то вряд ли получите более-менее удовлетворительный ответ. Если вы спросите соискателей на рынке труда, ставших вчера кандидатами наук: «При каких условиях разрешение производителям выкупать места на полках в супермаркетах в отличие от запрета подобной практики будет выгодно потребителю?» — то вряд ли добьетесь чего-то большего, чем удивленный взгляд. Это вопрос логики исключительно микроэкономической природы и крайне примитивен по своей структуре (что вовсе не означает то же самое, что и простой вопрос), однако данные навыки почти нигде более не преподаются. При этом те же самые люди, не способные ответить на вопрос микроэкономического характера, могут легко справляться с компьютерным программированием и преобразованием данных в удобную для использования форму. В целом происходит появление большего числа первоклассных эмпириков, чем когда-либо прежде, однако существенного прогресса в экономической теории за последние лет двадцать не наблюдается. Теории уделяется все меньше и меньше внимания.

53
{"b":"562063","o":1}