Литмир - Электронная Библиотека
A
A

Ну а теперь до интерферометра остался один шаг: посмотрите, в какой фазе приходит волна к двум разным точкам берега — слева и справа от вас. Если волна приходит одновременно, в одной фазе, то, значит, «излучатель» находится строго напротив (рис. 1), если в левую точку волна приходит чуть раньше, с опережением по фазе, то, значит, «излучатель» находится слева (рис. 2), а если раньше приходит правая волна, «излучатель» находится справа.

В просторы космоса, в глубины атома [Пособие для учащихся] - _35.jpg_0

Как видите, индивидуальный подход к набегающей волне, наблюдение за ее фазой позволили получить совершенно новую информацию об источнике излучений. И вообще нужно сказать, что уважительное отношение к фазе, скажем, умение собирать волны в большие коллективы не просто так, «давай! давай!..», а с учетом особенностей каждой волны, с учетом ее фазы ознаменовало в физике целую эпоху великих открытий.

Именно уважение к фазе подарило нам рентгеноструктурный анализ (сопоставляя фазы рентгеновских лучей, отраженных от разных точек кристалла, узнают его структуру), голографию (учитывая фазы световых волн, отображают объем на плоской пленке), квантовые генераторы и, в частности, лазеры (чем отличается лазер от электрической лампочки? Прежде всего тем, что в лампочке атомы излучают свет каждый сам по себе и возникает хаос, вакханалия световых волн, а в лазере совсем иная культура излучения — атомы выбрасывают световые волны согласованно, волны эти когерентны — они совпадают по фазе и действуют сообща).

Наконец, умение уважать фазу подарило нам огромный класс измерительных приборов — интерферометров (рис. 3), к числу которых относится и наш межконтинентальный радиотелескоп. Чтобы легче разобраться в его возможностях и проблемах, бросим прощальный взгляд на затянутый туманом пруд, вспомним свои интерферометрические опыты и сделаем два важных примечания: чем точнее измеряется разность фаз, тем точнее можно определить направление на излучатель волн; чем больше база интерферометра (расстояние между точками, в которых измеряется фаза), тем больше сдвиг (набег) фаз и опять-таки тем точнее можно определить направление на излучатель.

В просторы космоса, в глубины атома [Пособие для учащихся] - _36.jpg

Эти примечания помогают понять, какими способами можно бороться за самую важную характеристику радиотелескопа-интерферометра — его угловую разрешающую способность, угловое разрешение, т. е. способность с высокой точностью различать источники излучений и их детали.

Лет тридцать назад, еще на заре радиоастрономии, делались первые попытки объединить несколько радиотелескопов в единую систему, но базу больше сотни километров сделать не удавалось. Многие препятствия были связаны с тем, что радиоизлучения, которые принимают антенны телескопов, имеют очень высокую частоту, а значит, время между соседними «гребнями» очень мало, мал период колебаний. Для сантиметровых волн, на которых по ряду причин удобней всего производить наблюдения, один период, т. е. один рабочий цикл интерферометра, как раз и попадает в интервал 3·10-10 — 3·10-11 с. В этом интервале находится цифра, с которой мы начали наш рассказ. И совсем уже мал сдвиг фаз — разница во времени, когда к антеннам интерферометра приходит гребень волны: чтобы измерить этот сдвиг фаз, все агрегаты комплекса, все радиотелескопы должны начинать отсчет фазы по выстрелу единого стартового пистолета, отбивающего время с точностью 10-12 % (ошибка на 1 с за полмиллиона лет).

Легко сказать «…по единому выстрелу… с точностью до 10-12 %», но как это сделать? Как это сделать, если между телескопами тысячи километров?

Для начала перечислим три способа, которые позволяют получить базу от нескольких километров до нескольких десятков километров. Высокочастотные сигналы с каждой из антенн можно передать на общий электронный блок, измеряющий разность фаз, по высокочастотному кабелю (рис. 5 на третьем листе цветной вклейки).

В просторы космоса, в глубины атома [Пособие для учащихся] - _71.jpg

Можно сделать то же самое, предварительно понизив частоту обоих сигналов в индивидуальных смесителях, (рис. 6), но с использованием общего гетеродина. Наконец можно связать антенны с единым измерительным комплексом с помощью каналов радиосвязи (рис. 7). Во всех этих случаях в разных участках системы возникают дополнительные сдвиги фаз, они суммируются, что как раз и препятствует увеличению базы.

В просторы космоса, в глубины атома [Пособие для учащихся] - _38.jpg_0
В просторы космоса, в глубины атома [Пособие для учащихся] - _39.jpg_0

Интересный метод создания больших интерферометров предложили в 1963 г. советские радиофизики. Сущность метода состоит в том, что принимаемый сигнал прямо на месте преобразуют и записывают на магнитную пленку вместе с сигналами синхронизации, сверенными по эталонным атомным часам (рис. 8).

В просторы космоса, в глубины атома [Пособие для учащихся] - _40.jpg

Таким образом получают как бы единую запись сигналов от двух или нескольких антенн — все эти сигналы привязаны к единой точке отсчета, к атомным часам, для которых как раз и характерна необходимая точность отсчета времени — что-то около 10-12 %. Потом все пленки с сигналами, привязанными к атомному времени, не спеша собирают и обрабатывают на вычислительной машине, которая учитывает все, вплоть до таких «мелочей», как вращение Земли и связанное с этим непрерывное перемещение наблюдателей по отношению к фронту волны. На основе этого метода уже не раз создавались межконтинентальные интерферометры (рис. 4), было сделано немало интересных открытий.

В просторы космоса, в глубины атома [Пособие для учащихся] - _41.jpg

О некоторых работах, в которых участвовали наши радиоастрономы, рассказывает руководитель этих работ с советской стороны, руководитель лаборатории Института космических исследований АН СССР доктор физико-математических наук Леонид Иванович Матвеенко:

— В 1976 г. с участием советских исследователей было проведено семь циклов наблюдений на межконтинентальных радиоинтерферометрах. Это уже традиционные, плановые работы — они велись и раньше, будут проводиться в будущем. Первая работа 1976 г. (она длилась непрерывно более суток) прошла в феврале. В этот раз в интерферометр входили два радиотелескопа: в Хайстеке (район Бостона, США) и в Симеизе, в Крыму. Такие же циклы наблюдений были проведены в апреле и мае, но здесь уже работали радиотелескопы, расположенные в четырех точках планеты: в Тидбинбилле (Австралия, район Сиднея), в Мэриленд-Пойнте (район Вашингтона), в Биг-Пайн (вблизи Пасадены, США) и опять же в Симеизе. И наконец, пять циклов наблюдения по нескольку суток каждый (в июне, ноябре и декабре) с участием телескопов вблизи Бонна, в Хайстеке и Симеизе. Сезон 1977 г. в феврале открыл интерферометр Бонн — Симеиз — Онсала (Швеция).

Режим наблюдений, их программа очень насыщены и требуют исключительной четкости от всех участников работ. Обычно наблюдения одного объекта продолжаются 20 мин, затем пятиминутный перерыв на перестройку телескопа и снова двадцатиминутный сеанс. Сигнал, как правило, очень слаб, и его приходится долго «накапливать»; обычно период накапливания, этот квант измерений, составляет 300–400 с. Конкретные задачи наблюдений многообразны; об этом косвенно можно судить по числу исследовательских организаций — только в 1976 г. в наших работах участвовали Австрийская астрофизическая обсерватория, Институт Макса Планка (ФРГ), Массачусетский и Калифорнийский технологические институты, Смитсонианская, Хайстекская, Морская исследовательская и Национальная радиоастрономическая обсерватории, НАСА, Йельский университет (США), Крымская астрофизическая обсерватория и Институт космических исследований АН СССР. Все циклы наблюдений прошли удачно, «холостых выстрелов» не было. Это особенно радостно, потому что был впервые совершен трудный переход на очень короткую волну—1,35 см, что, в частности, позволило поднять разрешение интерферометра с 0,1 угловой миллисекунды до 0,05 миллисекунды. Оптический прибор с таким разрешением позволил бы из Москвы увидеть горошину во Владивостоке или увидеть с Земли яблоко на Луне.

29
{"b":"558860","o":1}